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ABSTRACT

Existing architectures, infrastructures, and frameworks for robotic systems

have limited utility when used in the context of integration. This limited utility

derives from either a narrow scope assigned to the architecture or a lack of applica-

tion of generally accepted software engineering principles for integration. Commercial

development strategies utilizing well-de�ned software architectural principles are fre-

quently at odds with how typical robotic software architectures are designed. This

inherent con�ict results in resource consumption on integration work in projects where

integration is not the primary goal. Moving results out of the laboratory and into the

commercial domain becomes di�cult.

In this thesis, I present an architecture based on a clear de�nition of soft-

ware architecture, an understanding of the stakeholders for the architecture, those

stakeholder interests, and the use of accepted principles of software architecture def-

inition and design. A software architecture is constructed around the viewpoint that

a robotic system can be considered an enterprise and everything associated with that

enterprise provides a service. This enterprise perspective leads to the description

of a service oriented architecture (SOA), which provides integration �exibility while

satisfying stakeholder requirements and interests. I construct an implementation ap-

proach embodying these principles and apply that implementation approach to real

world integration problems to illustrate the utility of such an approach in robotic

software development. Finally, I de�ne a set of metrics to be used when comparing

the SOA approach with other architectures for integration on robotic systems.
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Problem Statement and Background
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1. PROBLEM STATEMENT

Integration of new hardware and software components in robotic systems con-

sumes signi�cant e�ort and budget in projects for which integration is not the primary

focus. Yet software and hardware integration is a fundamental activity associated

with the research, development, and maintenance of robotic systems. Commercial

software development organizations, particularly those organizations associated with

business enterprises, have standardized architectural strategies and principles focused

speci�cally on facilitating integration. In addition, these commercial organizations

apply these same strategies and principles as a part of the internal engineering cul-

ture. However, current practices in robotics software development make limited or

no use of these accepted software architectural practices. Failure or reluctance to

consistently adopt these accepted practices within the robotics community results

in systems that are unnecessarily constrained, di�cult to maintain or extend, and

applicable to a single platform, a limited group of platforms, or a single aspect of

the robotic platform. The problem is further compounded when an existing system

is adapted to an unsuitable architecture without consideration for sound software

architectural principles.

Numerous attempts have been made to correct these problems (e.g., Côté

et al. [2004], Chaimowicz et al. [2003], Kenn et al. [2003], Colon et al. [2006], Kapoor

[1996], Volpe et al. [2000], Gorton and Mikhak [2004], Hulin [2003], Gertz [1993]).

However, these attempts have not gone far enough because of self-imposed scope

limits or because the corrections are a �duct-tape� integration of existing systems

without consideration for the overall architectural goals of the new system. The latter

is in fact not a correction to the problem but a di�erent manifestation of the same

problem. In addition, the di�erences in requirements and quality attribute valuation

between commercial, research, and military systems make integration goals a moving
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(if not missing) target. This lack of clearly de�ned integration goals when coupled

with an extensive number of API, infrastructure, programming model, framework,

and architecture choices leave the roboticist with a large integration e�ort or a new

development e�ort, both of which are costly and may result in a solution that is

marginally satisfactory. Additionally, the ability to rapidly transition new capabilities

from the laboratory to practical use is hindered because of an inability to quickly and

easily integrate those new capabilities with existing systems.

In this thesis, I present an integration approach based on the use of best prac-

tice software architecture and engineering principles along with concepts from the

�Enterprise Computing� domain1 and component-based design principles. The goal

of this approach is to create an integration environment in which �exibility and ex-

tensibility are of primary importance for implementing robotic platform solutions. In

addition, I have created a prototype reference implementation based on the archi-

tectural approach to validate the principles and provide a basis for comparison with

other integration approaches currently used in robotics. The comparison is made in

the context of a set of metrics chosen to characterize the di�culty or ease of doing

integration. Finally, I present the results of application of the architectural approach

to di�erent types of integration activities for a single robotic platform and show how

the metrics computed for that application compare to other approaches used for the

same activities. Thde integration activities are not �toy� problems but represent

real integration tasks from a Multi-University Research Initiative (MURI). Following

analysis and discussion of the results, I will present the research contributions and

limitations of the work presented here and identify extensions to the approach which

can be used to move the reference implementation from a proof-of-concept prototype

to a more robust and operational framework.

1Enterprise computing is typically used to discuss business systems that must interact but may
exist on heterogeneous systems usually as a result of legacy systems or merger and acquisition
activities.



4

2. SOFTWARE ARCHITECTURE BACKGROUND

Understanding the bene�t of using an architecture to enable integration �rst

requires knowledge of what a software architecture represents. Consideration of ex-

isting architectures designed for integration purposes and of the use of architectures

in robotics will further aid in formulating an approach for creation of an integration

architecture for use in robotics. In this chapter, we examine architecture from a soft-

ware engineering perspective and present design considerations for the proper design

of software architectures.

2.1 Architectures, Infrastructures, and Frameworks

2.1.1 DEFINITIONS AND TERMINOLOGY

There exist three concepts that are used interchangeably in discussions of archi-

tecture. Those concepts are architectures, infrastructures, and frameworks. However,

the three terms represent di�erent structures and are not truly interchangeable. Thus,

it is important to understand the di�erences between these concepts and how those

di�erences a�ect the ability to do integration e�ectively.

We start with the de�nition of a software architecture. An good working

de�nition is given by the Software Engineering Institute in their work on formalizing

architectural principles and practice. This de�nition has also been adopted as a

standard de�nition in IEEE Standard 1471-2000 [IEEE, 2000]. That de�nition is

2.1.1 Definition

Architecture �The fundamental organization of a system embodied in its components,
their relationships to each other, and to the environment, and the principles guiding
its design and evolution.� [p.3]
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We extend this de�nition by adding that an architecture also embodies the tech-

nical decisions made in support of business goals since software architectures are

created, used, and evolve to support the successful operation of the business owning

the architecture. Organizations not making explicit architectural decisions, i.e., just

developing code to get to market, have made architectural decisions in the way that

the �just developing code� creates some form of usable product consisting of elements

in relation to each other. Architectures formed this way tend to be di�cult to modify,

extend, or maintain because these characteristics were not considered when develop-

ing the code. The identi�cation of the business goals that drive technical decisions is

important for robotics, too. To understand how software architectures can be and are

used in robotics, an understanding of the business goals, which might be more prop-

erly called �research goals� or �mission goals,� helps in making technical and tradeo�

decisions which are driven by the requirements of research or the requirements de�ned

by the intended use of the robotic system.

The de�nition of infrastructure is �the underlying foundation or basic frame-

work (as of a system or organization).�1 A software infrastructure provides the foun-

dational elements that support the creation and use of software following a particular

model. An example of an infrastructure is CORBA2, a middleware infrastructure

enabling more e�cient development and use of distributed applications. Note that

an infrastructure is more concrete than an architecture and more focused. An archi-

tecture might be realized through an infrastructure or a collection of infrastructures.

A framework is de�ned as �a basic conceptional structure.�3 Wikipedia de-

�nes a software framework as �...an abstraction in which common code providing

generic functionality can be selectively overridden or specialized by user code pro-

viding speci�c functionality...�4 Thus, a framework is a set of constructs created to

support software development following an explicit set of rules. Typical frameworks

include graphics frameworks such as OpenGL and DirectX, system frameworks such

1Merriam-Webster's Collegiate Dictionary, 11th Edition, s.v. �infrastructure�
2Common Object Request Broker Architecture
3Merriam-Webster's Collegiate Dictionary, 11th Edition, s.v. �framework�
4http://en.wikipedia.org/wiki/Software_Framework
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as Portable Operating System Interface (POSIX) threads, and distributed system

frameworks such as Java 2, Enterprise Edition (J2EE). All of these are implementa-

tions providing code constructs that enable developers to follow well-de�ned sets of

coding rules. J2EE is slightly di�erent in that it might also be regarded as an infras-

tructure, but there exist framework elements within the J2EE speci�cation. Again,

note that a framework provides less abstraction and is more tightly focused than an in-

frastructure. A �nal example relating speci�cally to architecture is The Open Group

Architecture FrameworkTM (TOGAF) [The Open Group, 2010a] which is a frame-

work speci�cation for enterprise architectures. However, TOGAFTM is di�erent from

the previously described frameworks in the inclusion of specifying how architectures

should be developed, what content should be included, and descriptions of reference

architectures. It is worth noting that the TOGAFTM de�nition of an architecture was

extended to include the description of the architecture as an acceptable de�nition of

architecture[The Open Group, 2010b]. We believe, based on experience, that this

extension leads to an inconsistent and confusing use of the term �architecture� when

used without proper context. To maintain clarity, we will not use the description

of an architecture as the architecture itself but simply as one representation of the

architecture. Other representations of an architecture exist to include a system im-

plementation based on the architecture or a reference architecture description used

to show usage, guide development, and provide conformance criteria.

What can be understood from all of this is that an architecture is neither an

infrastructure nor a framework. It is more, incorporating possibly many infrastruc-

tures and frameworks and de�ning how those elements5 are related to each other,

both statically and dynamically. It is this de�nition of an architecture that will

guide our development of an integration architecture for robotic platforms. The ar-

chitecture must provide the externally visible properties of those elements (i.e., their

interfaces), de�ne how they interact, and de�ne how they are to be used within the

architecture. The usage model may be done via a reference architecture, a reference

5We use the more general term element instead of component so as to distinguish between things
that make up an architecture and the speci�c use in the term �component architectures.�
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implementation, or other similar implementation.

2.1.2 ARCHITECTURE EXAMPLES

There are a large variety of di�erent architectures, reference architectures, and

architectural frameworks. Enterprise architecture is an architectural category that is

used to describe the elements, structures, processes, and relations of enterprises. The

term �enterprise architecture� does not refer speci�cally to software architecture but

has come to be associated with that use. This association is a result of the alignment

of the Information Technology (IT) functions with the enterprise architecture as a

means of enablement. Of the many di�erent ways of describing enterprise architec-

tures, the most commonly used is called the Zachman Framework, de�ned by John

Zachman [Sowa and Zachman, 1992, Zachman, 2010]. An early application of the

Zachman Framework is demonstrated in [Dedene and Snoeck, 1994]. The Zachman

Framework is not speci�c to software architectural description but provides a basis for

many of the enterprise software architectural descriptions including TOGAFTM [The

Open Group, 2010a], The Treasury Enterprise Architecture Framework [US Dept

of the Treasury CIO Council, 2001], and The Department of Defense Architecture

Framework (DoDAF) [DoD Deputy CIO, 2009].

Reference architectures provide a standard against which other architectures

may be evaluated for conformance to a particular architecture model. Examples of

reference architectures include the OASIS SOA Reference Architecture [OASIS, 2009],

the Federal Enterprise Architecture (FEA) [U.S. O�ce of Management and Budget,

2010], and the DoD Business Enterprise Architecture (BEA) [DoD Business Trans-

formation Agency, 2010]. Within the robotics community, two notable reference ar-

chitectures are the 4-Dimensional/Real-time Control System (4D/RCS) architecture

[Albus, 2002] and the Joint Architecture for Unmanned Systems (JAUS) [Depart-

ment of Defense, 2004]. We will return to 4D/RCS and JAUS in Chapter 3. For

our service-oriented approach, we provide a de facto reference architecture through

documenting the expected structure constituting a service-oriented architecture, ex-

pected patterns of interaction, and through application of service-oriented principles
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to speci�c integration tasks to illustrate usage and provide a basis for measurement.

2.2 Architecture Principles and Patterns

Software architecture principles are guidelines for applying architecture [The

Open Group, 2010a]. The principles provide guidance on what constitutes a satis-

factory architecture and give reference points on identifying when an architecture is

unsuitable. Architecture patterns, on the other hand, are applications of architectural

principles and software components in such a way that similar problems can be re-

peatedly solved using the same or equivalent combinations. In this way, architecture

patterns are related to software design patterns as described in [Gamma et al., 1993,

1994]. In fact, some architectural patterns are just generalizations of software design

patterns described in Gamma et al. [1994].

Architectural principles for software have been around since at least 1962 when

Fred Brooks is credited with having coined the term �architecture� [Buchholz, 1962,

Clements et al., 2002]. The focus of architectural principles has been on di�erent

things at di�erent times. Some focus areas include hardware, user interface, or even

parts of the software visible to the user (not necessarily the interface). Recently, how-

ever, the concepts of architecture, what architecture is, and the principles underlying

software architecture have begun to be codi�ed through standardized de�nitions and

standards-based architectural principles, primarily through work done at the Soft-

ware Engineering Institute (SEI) at Carnegie Mellon University [SEI, 2008], but also

through The Open Group in their work on TOGAFTM [The Open Group, 2010a],

the Organization for the Advancement of Structured Information Standards (OASIS)

[OASIS, 2010], and the United States O�ce of Management and Budget in speci�-

cation of the Federal Enterprise Architecture (FEA) [U.S. O�ce of Management and

Budget, 2010].

In the next sections, we will discuss architectural principles and patterns and

how they can be used in the design of robotic or autonomous platform software

architectures.
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2.2.1 ARCHITECTURAL PRINCIPLES

As mentioned earlier, architectural principles are guidelines for applying soft-

ware architecture. TOGAFTM identi�es common architectural principles and phrases

those principles in business and information technology terminology with the aim of

applicability within the business enterprise context. We state a subset of those prin-

ciples that have applicability to autonomous systems here but recast them in more

general terms for alignment with autonomous systems.6 The applicable principles are

1. Primacy of Principles�the enterprise can only succeed when all participants

follow the same rules,

2. Maximize Bene�t to the Enterprise�decisions must be made in the context of

the larger enterprise, not in a sel�sh fashion for the bene�t of a single organi-

zation or function,

3. Business Continuity�the enterprise must continue to function in spite of inter-

ruptions,

4. Common Use Applications�application development must be applicable (as

much as possible) to the organization as a whole and not to any individual

organization or group,

5. Service Orientation�the enterprise is organized around delivery and consump-

tion of services representing the processes used in interaction between members

of the enterprise,

6. IT Responsibility�the infrastructure is responsible for ensuring that the (rea-

sonable) needs of all enterprise participants are equitably met and for identifying

the conditions for how and why the delivery expectation may degrade, and

6For a detailed explanation and additional principles cf. The Open Group [2010a]. The principles
cited here are those found in TOGAFTM having the most direct applicability to autonomous systems
when de�ning integration and architectures to support integration.
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7. Protection of Intellectual Property�the enterprise is heavily invested in intel-

lectual property and the infrastructure must ensure the reasonable protection

of that investment.

Each architect ultimately must decide on an appropriate set of applicable architectural

principles. The principles for a particular architecture are derived from various sources

including the type of architecture, the existing and planned applications supported

by the architecture, organizational culture, goals, constraints and processes, laws and

regulations, or they may be inherited from the use of a reference architecture or

reference model. For application in autonomous systems, the enterprise may take

various forms including the collection of all subsystems on a robotic platform, a

group of collaborating robots, and multiple, collaborating groups of robots. We will

to return these perspectives in later chapters but it is important to understand that

the expectations for a business enterprise do not di�er greatly from those for a robotic

system and this parallel is the basis for how service orientation applies to integration

for robotics.

2.2.2 ARCHITECTURAL PATTERNS

TOGAFTM de�nes architectural patterns as [The Open Group, 2010a, page 1,

Architecture Patterns]

�In TOGAF, patterns are considered to be a way of putting building blocks
into context; for example, to describe a re-usable solution to a problem.
Building blocks are what you use: patterns can tell you how you use them,
when, why, and what trade-o�s you have to make in doing so.�

Software design patterns are familiar to anyone who has read the �Gang of Four�

Design Patterns book [Gamma et al., 1994] or spent much time browsing the web for

current practices in software development. Patterns such as proxy and mediator are

so common that to cite examples could �ll several pages. The utility of these patterns

lies in their descriptive nature which permits a rapid means of communicating exactly

what is intended for a particular design. Architectural patterns have a similar com-

municative ability but have not been in such widespread use. Di�erent architecture
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patterns have been identi�ed and collected into various repositories or described in

books on patterns (e.g., Erl [2010, 2009b], Booch [2010], The Hillside Group [2010],

Fowler [2003], Hohpe and Woolf [2004, 2003]. The description of patterns used by

TOGAFTM is based on the IBM Redbook Series [Galic et al., 2003] and classi�es

architecture patterns hierarchically as

1. Business patterns�identify business actors and describe the interactions be-

tween them in terms of typical business interactions,

2. Integration patterns�used to combine business patterns into a �solution.� These

are typically described as work�ows or business processes,

3. Composite patterns�identify combinations of business and integration patterns

such as those used in eCommerce applications,

4. Application patterns�implementation patterns used for each business and in-

tegration pattern, and

5. Runtime patterns�implement certain quality attributes or �service level char-

acteristics� such as performance or scalability.

Each pattern group is typically used in enterprise business systems. We believe they

also have applicability in the architecture of a robotic software system. For instance,

Business patterns include the Collaboration pattern in which users work with one

another to share data and information. This type of collaboration is present in an

autonomous system in which the users can be viewed as components/agents in the

autonomous system sharing sensor data or mission planning information with other

elements to create a functioning robot. We discuss this further in Chapter 5 with

particular focus on the use of the Service pattern.

An important set of architectural patterns are found in the three broad cate-

gories of patterns identi�ed as

1. Layered�elements are grouped into layers that are arranged hierarchically based

on some form of process �ow or level of detail. Strict layering requires that com-

munication only occur between adjacent layers using interfaces,
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2. Pipeline�elements are grouped into a sequenced ordering typically associated

with the �ow of data or control through some process. Another term for this

pattern is �pipe-and-�lter� to indicate that the �ow is through pipes and the

elements act as �lters on whatever is �owing, and

3. Messaging�elements are loosely arranged and communication occurs through

the sending and receipt of messages between the elements. In many messag-

ing architectures, a central collection of elements may serve as a dispatch and

routing hub to further isolate elements from each other. Such a hub is called a

�message broker.�

We will use these categories of architectural patterns in Chapter 3 to classify existing

robotic architectures.

2.3 Architecture Documentation

Designing a software architecture entails more than just making decisions

about the choices of components and how to connect those components. Those de-

cisions and their consequences have to be clearly communicated to anyone with an

interest in the architecture. As stated in Clements et al. [2004],

�The perfect architecture is useless if it has not been expressed under-
standably.�

Thus, describing the architecture accurately and comprehensibly becomes an impor-

tant task.

There have been many approaches de�ned for the description and documen-

tation of software architectures. As mentioned previously, architecture frameworks

such as TOGAFTM de�ne how architecture descriptions should be made and what

artifacts should be created. Formal description languages termed Architecture De-

scription Languages, or ADLs, have been designed to describe architectures in more

precise terms using mathematical or other formalisms related to modeling. In Med-

vidovic and Taylor [2000], several ADLs are identi�ed and compared, all taking a
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di�erent perspective on the architecture but all based on a formal speci�cation of the

architecture.

Other description approaches include the �4+1� view model as described in

Kruchten [1995]. A view is de�ned as a representation of a set of elements and the

relationships between them. The �4+1� approach identi�es a set of four views of the

architecture including logical, process, development, and physical. These four views

provide a description of the architecture appropriate to di�erent groups interacting

with the architecture at various stages in the lifecycle of the architecture. The �+1�

view is a set of scenarios associated with each view and showing the connection

between the other four views. This approach has seen widespread acceptance in

commercial software development organizations and is well supported by commonly

used modeling tools.

Researchers at the SEI have extended the view concept to provide a richer

description capability. This view-based approach is described in Clements et al. [2004]

and is called �Views and Beyond�. The �Views and Beyond� approach provides a

representation and documentation toolset from which an architectural description can

be created and made comprehensible to most audiences. We will base the description

of our architecture on the �Views and Beyond� approach and will refer to �Views

and Beyond� as simply V&B. The remainder of this section will describe the V&B

approach in more detail.

The V&B approach to documentation de�nes a taxonomy of views from which

an architect selects to represent the architecture. The documentation structure asso-

ciated with those choices then re�nes the perspectives and content the architect should

provide. The �rst level of view decomposition is termed viewtypes and consists of

1. Module�fundamental unit of implementation in the system and composed of

di�erent elements and relationships. A module, in theory, represents an inde-

pendent element with no external dependencies,

2. Component-and-Connector (C&C)�a fundamental unit of execution in the sys-

tem describing components and how those components are connected to each
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other, and

3. Allocation�the relationships between the system's software elements and the

development and execution environments in which those elements reside. Allo-

cation viewpoints are typically used to associate speci�c architectural elements

with physical elements such as software �les, libraries, processes, or hardware.

Each viewtype is further decomposed into styles. Styles are architecture families sat-

isfying a given set of constraints and solving certain types of problems in a more or

less uniform, technology independent way. Architecture styles are related to archi-

tecture patterns through the association of pattern groups with certain styles. Views

are associated with styles and represent application of a style to a particular system.

There exist many di�erent architecture styles but the more commonly used styles are

[Clements et al., 2004]

1. Module viewtype

(a) Decomposition�shows �is-part-of� relationships between modules and el-

ements making up the module,

(b) Uses�shows dependency relationships between modules,

(c) Generalization�shows extension or inheritance relationships between mod-

ules, and

(d) Layered�shows system partitioning into distinct layers with ordering re-

lations and interaction constraints on the layers.

2. C&C viewtype

(a) Pipe and Filter�shows data transformations as a �ow of data through a

series of interconnected �lters where each �lter applies some transformation

to the data,

(b) Shared Data�shows relationships between data, persistent storage of data,

and users of that data,
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(c) Publish-Subscribe�shows interaction between components as events pub-

lished by a component and subscribed to by other interested components,

(d) Client-Server�shows interaction between components as requests for ser-

vice by a client and responses to those requests by a server or servers,

(e) Peer-to-Peer�shows interaction between components as sequences of client-

server type interactions with client and server roles being exchanged at each

interaction, and

(f) Communicating Processes�shows interactions between components exe-

cuting concurrently and describes behaviors speci�c to concurrency.

3. Allocation viewtype

(a) Deployment�shows allocation of C&C elements to execution environments

including physical hardware,

(b) Implementation�shows allocation of the development work products to

the development infrastructure, and

(c) Work Assignment�shows allocation of system elements to development

resources

Additional documentation types that are valuable for understanding an architecture

but which do not �t within either a viewtype or style include

1. Context�shows the relationship of the system to the environment external to

the system including external entities using the system and external entities

a�ected by the system operation. DoDAF v.2documentation describes context

in a graphical representation [DoD Deputy CIO, 2009],

2. Combined Views�useful when one or more elements appears in multiple views

to show how the multiple views are similar or represent transformations of each

other,

3. Variability�shows how the architecture can be used to create di�erent systems

from the same base architecture through variation of architectural elements, re-
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lationships, or behaviors. COVAMOF is an example of a variability description

framework [Sinnema et al., 2004],

4. Dynamism�describes architectures that may change structure or form during

execution of the system,

5. Interfaces�describes the contractual relationship between providers of function-

ality and users of that functionality as expressed through the public interfaces,

6. Behavior�describes di�erent forms of communication, constraints on ordering

of items like messages, or behaviors associated with real-time modes of operation

such as clock-triggered events, and

7. Requirements�describes capabilities the system must provide (functional) and

characteristics the system must exhibit (non-functional).

Architecture views are used for communicating the design, construction, and func-

tioning of the architecture to all stakeholders associated with the system. The stake-

holders are those people, groups, or systems impacted in either a positive or negative

way by the architecture design. The availability of view choices is quite large and

it is up to the architect to select a set of views appropriate to the architecture that

provides the greatest bene�t to each stakeholder. This selection requires an analysis

of the di�erent stakeholders, their motivation as a stakeholder, and the type of archi-

tecture description best meeting their needs. We will return to this when we de�ne

the requirements for an architecture that is designed with integration as the primary

goal.

In the next chapter, we consider the types of architectures and frameworks in

use within the robotics community. In addition, we will discuss how each architecture

or framework supports integration.
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3. ROBOTIC ARCHITECTURES BACKGROUND

As a means of motivating our design of an integration architecture for robotics,

we will examine recent work on architectures, infrastructures, and frameworks for

robotics and consider the support for or limitations to integration.

3.1 Robotic Architectures

In addition to software architectures as described in Chapter 2, the term �archi-

tecture� is used in robotics to refer to models of how actions or control are associated

with sensing. These robotic architectures are similar to software architectures but

provide descriptions of how robotic components generate observed behaviors of the

robot. Three classes of robotic architectures are generally recognized [Murphy, 2000]:

1. Deliberative or Cognitive

2. Reactive

3. Hybrid

The Deliberative architecture was formulated to allow sensors to provide input to a

cognitive module for generation of plans or schedules for the next action or actions

to be taken by the robot. The quintessential example of a deliberative architecture

is that found in Shakey the Robot1 [Nilsson, 1984]. In Deliberative architectures,

sensors provide data to a planner or scheduler which uses the sensor input to de�ne

a set of control commands sent to actuators to create an action. No action is taken

without direction from the planner and all sensor outputs are fed into the planner.

1The work on Shakey started in the mid-1960s at Stanford Research Institute and continued
for over a decade. A good description and the technical reports on Shakey may be found at
http://www.ai.sri.com/shakey/.



18

Deliberative architectures have limitations associated with how fast the robot can

respond to stimulus because such a response must be generated by the planner and

if the planner is slow in delivering control commands, the robot will appear to be

unresponsive or very slow to respond. Shakey's movement was very shaky since it

could not move very far until the next set of commands were provided by the planner.

Reactive architectures were �rst described by Brooks [Brooks, 1986] and Arkin

[Arkin, 1989] for mobile robots. These architectures are primarily recognized by the

absence of any planning ability. Thus, in a reactive architecture, an actuator or con-

trol responds directly to a stimulus obtained from an input sensor. The overhead

associated with planning is avoided by creation of reactive behaviors that are im-

mediate and based strictly on the sensor's input. This behavior is similar to that

exhibited by cockroaches when they �ee in response to light or in the typical human

reaction when touching a hot item. Reactive architectures can exhibit very rapid

response times to a stimulus but only if the appropriate behavior is provided for a

particular association between sensor and actuator or control.

The Hybrid architecture blends features of both reactive and deliberative ar-

chitectures. In a hybrid architecture, a planner is responsible for coordinating the use

of certain types of behaviors based on sensory input while other behaviors are pro-

vided in a reactive manner. A robot employing a hybrid architecture could be given

a mission that requires the platform to travel to some set of locations, searching for

something along the way, and mapping the areas explored while reacting to certain

dangerous conditions without requiring planning input.

Robotic architectures can be considered as system (software, hardware, and

processes) architectures with the primary focus on achieving behavioral goals, e.g.,

searching for items, reacting to a stimulus, conducting a surveillance mission in a

de�ned geographic area. This architectural focus is not necessarily concerned with

the overall software architecture requirements but drives a particular approach to the

structure and organization of the software elements, i.e., the software architecture.

Any software architecture proposed for use in integration for robotic plaforms must

account for the inclusion of these robotic architectures. In the next sections, we will
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examine existing architectures for robotic applications and show how they map into

software architectural patterns or models.

3.1.1 RECENT WORK IN ROBOTIC SOFTWARE DESIGN

3.1.1.1 4D/RCS

The 4D/RCS2 is an architecture developed by James Albus at NIST [Albus,

2002] for specifying the control of robotic vehicle systems. It incorporates elements

of both reactive and deliberative architectures and is structured like a military chain

of command with di�erent levels of command and control. Each level represents a

planning level with a well-de�ned time horizon. The time horizon increases as one

moves up the chain-of-command from real sensors and actuators towards the battalion

level. At each level are a set of computation nodes incorporating world maps, behavior

generators, and sensory processing. The architecture maintains a world map which

is updated via sensor and actuator proxies at each level. This information is collated

and passed up the chain of command while commanding instructions are passed down

from the appropriate level to the sensors and actuators. This architecture is limited

in that it only allows a hierarchical control structure, which limits the �exibility of the

system such that when new sensors or actuators are added to the system, knowledge

of their existence must be propagated to all levels of the control structure for e�ective

use.

The hierarchical, layering structure of 4D/RCS is a common software archi-

tectural pattern. The layer pattern is intended to enforce strict �ow of control and

data only between adjacent layers. The di�culty in most layered architectures is that

because the coupling between adjacent layers is typically underspeci�ed, control and

data bleed through layers due to direct calling into non-adjacent layers. These direct

calls may be required to access data unavailable in adjacent layers via the layer inter-

faces. Such �layer bridging� or �cross layering� works, but promotes strong coupling in

non-adjacent layers and makes the architecture di�cult to understand, maintain, and

24-Dimensional/Real-time Control System
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evolve (cf., Kawadia and Kumar [2005] for a fuller explanation of the di�culties). We

believe 4D/RCS is a good architecture to incorporate into a much larger architectural

speci�cation since it is aimed speci�cally at vehicle systems and focused on real-time

control of these systems.

3.1.1.2 Subsumption

Subsumption [Brooks, 1986] is the name given to a particular type of reactive

system proposed and implemented by Rodney Brooks at the MIT Arti�cial Intelli-

gence Laboratory. Subsumption is based on viewing the behavior of the robot in

terms of layers of competency. The name �subsumption� comes from the fact that

in this multi-layered architecture, higher layers may subsume the behaviors of lower

levels [Brooks, 1986]. Complex behaviors are built up from combining simple atomic

behaviors such as move, sense, and run away. The more complex behaviors subsume

the simpler behaviors by taking control away from the lower layers when indicated

by some sensory or control input.

Subsumption as a software architecture makes use of layering to achieve the

goals of additivity and robustness [Brooks, 1986]. These goals are met by encapsulat-

ing reactive behavior in the lowest layers and simply replacing the atomic behavior

when needed, such as when a sensor fails, for instance. The fact that Subsumption

uses layering as the architectural pattern presents the same di�culties described in

the Section 3.1.1.1.

3.1.1.3 3-Tier Architecture (3T)

The 3T architecture is a control architecture �rst proposed by Bonasso et

al. [Bonasso et al., 1995] in 1995. 3T architectures focus on control of a system

through three separate, communicating layers. The �rst layer is the �reactive skills�

layer, in which a set of reactive behaviors are maintained along with a skill manager.

The skill manager is responsible for activating or terminating speci�c skills based on

sensor input or inputs from the higher layers. The second layer is the �sequencing�

layer. This layer is responsible for decomposing a plan provided by a higher layer
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into a set of skill requirements for activation in the reactive layer. The third layer

is the �deliberative� layer and is responsible for formulating plans based on mission

requirements. The formulation is not really an ad hoc formulation but a list of plans

corresponding to speci�c mission level taskings.

The 3T architecture is a software architecture used to specify how control is

e�ected within a robotic system. As such, it is focused on promoting �exibility and

robustness. Flexibility is required to accommodate new skills and plans while robust-

ness provides the ability to continue functioning in the presence of failure. Given

that the 3T architecture was designed to deal with control of autonomous systems

in space environments, these requirements are very important.3 The tiers in 3T rep-

resent a layered architecture although in some implementations of 3T, messaging is

used between the di�erent tiers.

3.1.1.4 Player

Player [Gerkey et al., 2001] is a distributed control protocol based on socket

communications developed by the University of Southern California Robotics Re-

search Laboratory. The goal is to provide transparent access to sensors and controls

of robots in an environment using POSIX socket constructs. This de�nition is useful

since most programming languages and operating systems support sockets in a mostly

uniform fashion. As described in the original paper, Player is a protocol description

and can be implemented by any software implementing that protocol. The Player pro-

tocol may also be used in a sensor and control simulation environment called Stage

[Gerkey et al., 2003] and in Gazebo for simulating multiple robots [Vaughan et al.,

2003].

The di�culty with Player is that while sockets are ubiquitous, they do not

permit ready control from truly remote clients, e.g., a geographically dislocated client.

Further, while Player speci�es a standard protocol, it is not su�cient for Player to

3We should be careful not to confuse the 3T architecture in robotics from a 3-tier architecture
as used in software engineering. In the form used in software architecture, the tiers represent user
interface, functional processing, and data access. There are similarities but the correspondence is
not exact and the goals are di�erent.
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be considered an architecture. We believe that despite these shortcomings, Player is

a very usable protocol and easily �ts into a larger software architecure description.

In later chapters, we will show one example of Player used as the foundation for an

Enterprise Service Bus; a role which it easily ful�lls.

3.1.1.5 JAUS

JAUS4 is an architecture de�ned by the U.S. Department of Defense (DoD)

and intended for use in all autonomous systems developed for DoD use. Its chief

characteristic is a component-based messaging system. The organization of the com-

ponents follows a hierarchical structure with �commanders� at di�erent levels for

controlling the �ow of data and control both up and down the chain of command.

The speci�cation of JAUS consists of a description of the domain of applicability

for JAUS, a description of the components expected in a JAUS compliant imple-

mentation, message de�nitions, and a compliance guide for determining whether a

particular implementation complies with the requirements of JAUS [Department of

Defense, 2004]. As of 2005, the JAUS speci�cation was taken over by the Society of

Automotive Engineers (SAE) as the AS-4 standard [Department of Defense, 2005].

The current version of JAUS is 3.3 but version 4.0 is in draft at the time of writing

of this thesis and represents a signi�cant change over the previous versions approach

to unmanned systems architecture.

While JAUS is intended to specify interoperability, it constrains the compo-

nents to use strict messaging with pre-de�ned messages for interaction between com-

ponents. Strict messaging is useful in many situations but may limit integration of

components that are not message-capable, as may be the case for legacy components.

In addition, JAUS does not specify how components such as hardware abstraction,

display, and data integration are incorporated in the overall system. We believe that

JAUS may be suitable for command and control architectures but is inadequate for

broader uses and may not even be usable without modi�cation for systems incorpo-

rating legacy software components.

4Joint Architecture for Unmanned Systems
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3.1.1.6 Joint Technical Architecture

The Joint Technical Architecture [JTADG, 2003], or JTA, is a Department

of Defense (DoD) standard specifying three views of an interoperable system ar-

chitecture. These views are operational, technical, and system. The JTA speci�es

subdomains focusing on concepts such as cryptography, ground systems, aerial sys-

tems, and the like. The intent of the JTA is to provide a unifying view on integrating

widely disparate systems such as communications, war�ghting machinery, and people

in such a way that DoD contractors and their systems can more easily interoperate.

Since the JTA's intent is more broad than just autonomous systems, it is an

abstract system architectural speci�cation for large systems. As such, its applicability

is limited when used to specify the software interoperability of autonomous systems.

However, JAUS was created as a JTA-compliant architecture, and so the guidance

provided by the JTA is useful for de�ning more concrete architectures with direct

applicability to autonomous systems.

3.1.1.7 Pyro

Pyro [Blank et al., 2003, 2004, 2006] stands for �Python Robotics� and is a pro-

gramming environment intended to be used in a lab setting. The base programming

language is Python, which is an object-oriented interpreted language. The interpreted

capability provides a means for quickly turning around code changes to check out the

e�ect. As an environment, it also provides a set of base objects which provide a level

of abstraction above the hardware. This abstraction means that the user doesn't have

to worry (too much) about the details of the hardware and can focus on the software

interaction of the system objects. Since Python also provides an ability to compile

the source code, performance can be optimized (within the limits of the language) for

use outside of the lab.

This system is targeted to a single language as implied by its name. This

limitation may not be too severe if one is interested in only using Python. Tools

exist to convert C and C++ to Python such as the Simpli�ed Wrapper and Interface
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Generator (SWIG) [Beazley, 2007]. However, in a commercial environment, most

engineering shops are reluctant to develop in one language and transform to another

due to maintainability issues. In safety-centric systems such as those used in medical

environments or those requiring Federal Aviation Administration (FAA) certi�cation,

it may not be possible to guarantee the safety of transformed code. Additionally, most

large-scale systems require integration of components that may not be amenable to

use with or within Python or may exist in languages such as Matlab, Fortran, or

Assembler for which no transformation to Python is available. Furthermore, the

facilities for integration are limited to whatever can be done with the existing base

components or require writing new components. Thus, integration can potentially be

timely and costly.

3.1.1.8 MARIE

MARIE [Côté et al., 2004] stands for Mobile and Autonomous Robotic Inte-

gration Environment. MARIE is being developed with the purpose of accelerating

software integration for robotic platforms. The basis of MARIE is a software design

pattern known as the MEDIATOR pattern [Gamma et al., 1993]. This pattern cre-

ates loose coupling of distributed software components by designating a centralized

control component known as the �mediator� which controls and coordinates �peer�

components. The loose coupling permits integration of heterogeneous components

with little regard for development language, communications protocol, or underlying

execution mechanisms. In addition, MARIE is designed as a layered architecture

with layers supporting core abstractions, component creation and management, and

application building.

MARIE answers many questions related to the integration of components used

in robotic or autonomous applications. However, the layering structure forces deci-

sions about how components are created and managed and what things are considered

core abstractions. In general, these early decisions can lead to brittle systems by forc-

ing early decisions which become integral to the system and force abstractions into

concrete implementations. In addition, mediator patterns also require that the me-
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diator understand how di�erent processing nodes interact to e�ectively control and

coordinate. Finally, the mediator pattern is less generalized than typical service ori-

ented architecture patterns which may include mediators as a part of the service

infrastructure.

3.1.1.9 Remote Operations Control Interface (ROCI)

ROCI [Chaimowicz et al., 2003] is a programming framework developed by the

University of Pennsylvania to support integration of distributed sensors and actuators

in support of multiple autonomous air and ground robots. It supports �injectable�

modules, i.e., modules that may be loaded via con�guration during runtime. The

con�guration system relies on XML to describe the con�guration settings. ROCI

makes use of modules which represent the processing of a form of input data to de-

rive another form of output data as a black box. The module makes no assumptions

about the source of the input or the consumer of the output. Modules are further

organized into tasks which represent collection instances of modules and the interac-

tions between those instances. ROCI uses a communication connection called �pins�

which represent communication endpoints on the modules. This model is similar to

a hardware connection model.

ROCI has features that are enabling capabilities for service oriented architec-

tures. Speci�cally, the speci�cation of module con�guration and the dynamic loading

ability provided through �injectability� is related to the de�nition of service descrip-

tors and run-time access to service providers. Additionally, the notion of �pins� is

incorporated within service descriptors when associating a service's logical interface

with a speci�c communication channel with well-de�ned endpoints. We will return

to these concepts in Chapter 5 when we de�ne the constitution of service oriented

architectures.

3.1.1.10 Controlling Robots with CORBA (CoRoBa)

CoRoBa [Colon et al., 2006] is a development framework intended to allow for

integration of distributed robotic control, sensor, and processing components. It is



26

fundamentally about what its name says: using CORBA. CORBA (Common Object

Request Broker Architecture) is an architecture for tying distributed object-oriented

components together. For more information refer to [Object Management Group,

2007].

Use of CORBA as a communications method between distributed objects has

limitations. First, CORBA only works e�ciently for components implemented in

object-oriented languages. This limitation may preclude or make di�cult the use

of legacy components not implemented in an object-oriented paradigm. Second,

CORBA relies on being able to de�ne an interface via the Interface De�nition Lan-

guage (IDL) and then compiling that interface into a set of proxy objects for use on

both the client and server systems. Compiling an IDL description may be di�cult to

do if a chosen language does not have a corresponding IDL compiler. Third, CORBA

is inherently synchronous since it relies on a request/response sequence for each client

request. Mechanisms exist within CORBA to give the appearance of asynchronous

behavior, but those mechanisms have been traditionally disregarded due to complica-

tions that arise from their use. Fourth, most CORBA implementations are quite large

and tailoring the implementation to �t within the constraints of an embedded system

is di�cult or impossible in some cases. Finally, there are few open source CORBA im-

plementations that are readily supported and commercial CORBA implementations

can be very expensive.5

3.1.1.11 Mobility Integration Architecture

Mobility is the name given to a software architecture used by iRobot in support

of their research robots [iRobot, 2002].6 The architecture is built around the CORBA

object model. Mobility is a layered software architecture using a standard CORBA

approach to building distributed object systems and o�ers the same advantages and

disadvantages of both layered and CORBA systems.

5One commercial CORBA implementation that the author is intimately familiar with is licensed
on a per cpu basis at a rate of several tens of thousands of dollars per cpu, renewable yearly. For low
volume production systems, this cost is typically passed directly on to the user or not supportable.

6Mobility and the research robots program at iRobot has been discontinued since 2004
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Mobility o�ered one of the �rst commercial views on developing software for

integrating systems on robotic platforms by stating explicitly that the product was

intended to address the issues surrounding system integration. Additionally, the

approach used in Mobility starts in the right direction of dealing with distributed

objects but stops short of o�ering signicant loose coupling due to the way CORBA is

used and the limited scope of the iRobot research robots.

3.1.1.12 Operational Software Components for Advanced Robotics (OS-

CAR)

OSCAR [Kapoor, 1996] is a programming framework from the University of

Texas designed to work speci�cally with control programs for robotic manipulators.

It is built around a componentized layered architecture with a strong focus on kine-

matic processing necessary for manipulator control. OSCAR is not intended as a

comprehensive framework or architecture but provides a useful set of components

that can be used in a larger architecture for dealing with manipulators.

3.1.1.13 FAST-Robots

The Framework Architecture for Self-controlled and Teleoperated Robots or

FAST-Robots [Kenn et al., 2003] is a framework for providing network control ca-

pabilities in support of experimentation with teleoperation and various levels of au-

tonomy. The framework is implemented in C++ and provides a base set of classes

from which the user derives a set of specialized objects. These objects are registered

within the framework and when execution begins, the framework is in control but

with user-de�ned functionality embedded in the framework.

FAST-Robots is designed speci�cally to be used as a rapid-prototyping tool for

experimentation and is focused on RoboCup Rescue Robots. This framework, while

not complete enough to use on its own, can be used as a means of communication be-

tween components incorporated within a larger architecture such as a service-oriented

architecture.
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3.1.1.14 Coupled Layer Architecture for Robotic Autonomy

The Coupled Layer Architecture for Robotic Autonomy or CLARAty [Volpe

et al., 2000] is a layered architecture implementing a modi�cation of the typical robotic

3T architecture. This architecture is a product of the Jet Propulsion Laboratory

and represents several years of research and development in robotic autonomy. The

typical 3T architecture involves a functional, executive, and planner layer with each

successive layer adding increased �intelligence.� In the CLARAty model, the planner

and executive layers are merged into a single layer with the addition of a common

database shared between the planner and executive layers.

Since CLARAty is a 3T architecture it su�ers from the issues previously de-

scribed for 3T architectures. However, as with many of the examples in this section,

we believe that CLARAty could be usefully included in a much larger architectural

description.

3.1.1.15 Robot Operating System (ROS)

ROS [Quiqley et al., 2009] is an open source e�ort based on work done at

Stanford University and Willow Garage7 with the goal of providing an architectural

framework supporting modular, tool-based development for robotic software. The

ROS framework provides tools and components supporting interaction patterns be-

tween software processes and elements such as messages, topics (broadcast messages),

and services (request/reply). ROS is a very loosely coupled architecture making use

of service orientation but also permitting other architectures to coexist. In addition,

ROS provides a network of repositories that federate other organization's open-source

software.

ROS is organized around a package concept. Packages represent the lowest

level of decomposition under ROS and can consist of any independent software con-

struct with a well-de�ned boundary. Examples include con�guration �les, executa-

bles, libraries, or third party software. Packages are further organized into stacks

7A company founded in 2006 with the purpose of developing personal robotics and open source
robotics software.
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which are collections of packages that provide some level of functionality such as nav-

igation. Stacks provide the ROS mechanism for code sharing either through linkage

like a library or through runtime access via messaging.

Since ROS is intended to be an operating system for robots, the ROS devel-

opers have provided an extensive toolset for navigating, managing, and manipulating

packages and stacks. These tools include package and stack creation tools, extensions

to Unix shells for navigating the ROS stacks and packages, and tools for creating

messages and services for handling these messages. Within ROS, the notion of a

service is de�ned as a pair of request/reply messages. Services are o�ered by nodes

which are computational processes. A robot might contain several nodes representing

di�erent types of computation found on a robot such as navigation, path planning,

motor control, or a speci�c type of sensor.

ROS is similar in approach to the service oriented approach described in this

thesis, but was released after the initial proposal of this thesis. Additionally, the

approach taken in this thesis is intended to be more general than that used in ROS.

This di�erence will be discussed in subsequent chapters, but is related to the way in

which users of the architecture elements access those elements and de�ne requirements

for use of services. However, we believe ROS and the architecture de�ned in this

thesis represent a convergence of thought within the robotics community that a loose

coupling approach to building robotic systems is desirable and increasingly necessary.

3.1.2 SUMMARY OF EXISTING ROBOTIC ARCHITECTURES

As can be seen from the previous paragraphs, there are a considerable num-

ber of architectures/frameworks aimed at providing guidance on building software for

autonomous systems. Although there are many more systems described in the litera-

ture, the ones discussed represent the mainstream of development and are indicative

of the approaches taken by researchers in getting to more �exible software. Table

3.1 summarizes the traits of each of the aforementioned systems with respect to the

behavioral models and architectural patterns used.

While each of the systems listed in Table 3.1 have their strengths and weak-
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Robot Arch.
Arch. Style

Layered Messaging Pipeline

Reactive Subsumption
4D/RCS JAUS

3T JTA
CLARAty CoRoBa

Hybrid MARIE Mobility
ROCI
OSCAR

FAST-Robots
Deliberative Shakey

ROS
Framework Player

Pyro

Table 3.1: Relationship between robotic behavior models and software architectural
styles for existing robotic architectures

nesses, no one of the systems, with the exception of ROS, is su�ciently �exible to

permit integration of both new development and legacy components without signi�-

cant development e�ort. We believe that a di�erent approach is required to assist all

stakeholders in robotic systems development and the research proposed here consti-

tutes the �rst examination of robotic architectures in the context of a software engi-

neering approach and with respect to a set of quality attributes expected of robotic

systems. As of the date of this thesis, other researchers are beginning to explore

similar approaches to reducing the di�culty and cost (in both time and money) of

building integrated robotic software. We believe that the current practice in commer-

cial software engineering is adequate to address this problem and needs to be shown

to be adaptable to the robotics community.

In the next chapter we consider how to compare di�erent architectures or ar-

chitectural approaches in the context of integration. This comparison will be made

through the use of appropriately de�ned metrics for quantifying the e�ects of inte-

gration on an existing system.
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4. SOFTWARE METRICS BACKGROUND

We have stated as a hypothesis that an architectural approach based on service

orientation provides a more e�cient means of supporting integration on robotic plat-

forms. A natural question to ask now is, �How much better, if any, is a SOA approach

over other architectures already in use?� To answer this question in a meaningful way

requires a de�nition of what we mean by �better� in this context. In this chapter, we

examine an approach using metrics to answer the question. The chapter starts with

a discussion of what �better� means. We then examine existing metrics that might be

used and limitations to their use. The chapter ends with the speci�cation of a set of

metrics for use in comparing architectural approaches to integration. These metrics

are used in Chapter 13 to examine the performance of the SOA for robotics.

4.1 Measurement Context

Metrics are functions mapping measurements into values representing some

characteristic of interest [Kaner and Bond, 2004]. This de�nition is the basis for

the Representational Theory of Measurement as used for software metrics [Fenton,

1994]. We will adopt the viewpoint that a metric for an attribute is a function of

measured quantities that preserves empirical relations between those quantities. Such

a metric is called a valid representation. In addition, many transformations between

di�erent representations for a metric may exist but we are only interested in those

transformations (called admissible transformations) giving valid representations when

acting on valid representations [Fenton, 1994]. Based on these properties we under-

stand that statements about measurements are only meaningful when the admissible

transformations are truth-preserving when applied to the measures in the statements

[Fenton, 1994]. In other words, if we are making statements about length, then those
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statements are valid for English system representations and for metric system repre-

sentations obtained through conversion from English system units.

With these de�nitions, we can now specify what we are interested in measuring.

A service-oriented approach to integration was chosen with the assumption that this

approach can reduce the amount of unfamiliar work in unfamiliar code to be done by

roboticists. Software integration work requires an understanding of

1. The structure, organization, and functioning of the new code,

2. The usage model of the new code,

3. The structure, organization, and functioning of the existing code1,

4. The usage model of the existing code,

5. The desired functioning of the integration result,

6. The model for test planning, creation, and execution, and

7. Techniques for identifying, locating, and �xing problems with the integrated

code.

These di�erent concepts all contribute to the cognitive complexity of performing inte-

gration. Increased code complexity is associated with increased di�culty in working

with the code and greater numbers of defects in that code. This increased di�culty

results in more time, people, and money to do integration, the potential need for

specialized skills, additional maintenance costs, or some combination of these. We

are thus looking for metrics that characterize this complexity, allow for pre and post

integration analysis, and can give some notion of how the complexity translates into

resource, schedule, and �nancial costs. Such metrics should also provide an ability to

make statements about architectures such as

�Architecture A is preferred over Architecture B because A is less complex
than B.�

1While it may sound strange to state this, in many cases, integration may be done by people who
are not completely familiar with the existing code. However, understanding of the existing code is
assumed when planning integration activities.
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or

�Architecture A is preferable to Architecture B because using A will take
less time, people, and money to add new features than B since A is easier
to understand.�

We capture the intent of the previous statements in the following de�nitions for

�Architecture Goodness� and �Architecture Fitness.�

4.1.1 Definition (Architecture Goodness) A set of desirable architectural qual-
ities represented by measurable architectural properties

These qualities are sometimes referred to as -ilities or quality attributes [Fabrycky and

Blanchard, 1998]. Examples of -ilities include testability, maintainability, �exibility,

modi�ability, and reliability. De�ning architectural goodness sets the expectations for

an architecture. However, knowing when those expectations have been met requires

translating the expectations into a measure of how well a given architecture matches

those expectations. For this alignment of expectations with reality we use the term

�architectural �tness� and de�ne it as follows:

4.1.2 Definition (Architecture Fitness) Evaluation of an architecture against
the measured values of properties representing the desirable qualities de�ned for ar-
chitectural goodness

Since integration is inherently about the modi�cation of existing software, or mod-

i�ability, we expect our metrics to measure changes in complexity through software

modi�cations. In fact, our hypothesis is that service-orientation reduces the over-

all system complexity encountered during integration by moving di�cult integration

tasks into standardized components used within a common infrastructure. These

standardized components can be created through automatic code generation from

simple declarations about what capability the component provides and how that ca-

pability is to be used. While the overall system complexity may not necessarily be

reduced, the complexity directly encountered by the person doing the integration is

signi�cantly reduced.
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4.2 Existing Metrics

Service-oriented approaches are distributed specializations of component-based

software systems. Thus, as a starting point, we will examine existing metrics for

object-oriented software, component-based software, and service-oriented software.

However, many of these metrics rely on other metrics representing the length of a

function as de�ned on procedural code such as counts of source code lines (SLOC)

or counts of the number of independent execution paths through the source code.

The latter is obtained from a consideration of an acyclic, directed graph representing

the control �ow through the source code and is known as the McCabe Cyclomatic

Complexity and denoted by vg [McCabe, 1976]. To understand these �foundational�

metrics we will examine how metrics are categorized and the characteristics most

commonly associated with various metrics.

4.2.1 METRICS TAXONOMY

Many di�erent metrics exist to serve a variety of purposes. However, based on

the taxonomy of metrics described in Mills [1988] and in Fenton and P�eeger [1998],

all software metrics can be grouped into at least one of three categories. Those

categories are

1. Process�metrics associated with models of software development

2. Product�metrics associated with the artifacts of software development

3. Resource�metrics associated with the project or program structure used to

manage software development

We will not be concerned with resource and process metrics other than to point out

that the results of measurements on development artifacts for speci�c projects and

within speci�c organizations are dependent upon the e�ective use of both processes

and resources. The process and resource metrics are designed to measure the e�ec-

tiveness of processes and resources in creating products, while the product metrics are
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designed to measure the overall result of those processess and resources as exhibited

by the product properties.

Product metrics can be further categorized based on the aspect of the artifact

that the metric characterizes, as follows:

1. Size�attempts to capture a notion of the quantity of software. Examples in-

clude Source Lines of Code (SLOC) count, function points, object points, and

Halstead's code volume.

2. Complexity�attempts to capture a notion of how di�cult the software is to

understand or manipulate. Examples include McCabe complexity and Henry

and Kafura information �ow complexity.

3. Quality�attempts to capture a notion of how good or bad the software performs

when used. Examples include defect count, mean time between failure (MTBF),

and defect repair rate.

Complexity metrics are typically subdivided into computational complexity and psy-

chological or cognitive complexity. Computational complexity is associated with the

di�culty of performing speci�c computations, usually in terms of time and space

requirements. Cognitive complexity, however, is the complexity associated with the

di�culty in understanding and using software. This di�culty has been associated

with the quality of developer performance, quality of the software artifact, and the

existence of errors in the artifacts [Zuse, 1990]. In Wang [2009], cognitive complexity

is associated with time and workload e�ects on human cognition (related to software

development artifacts) and can be divided into categories based on the sources of

complexity as follows:

1. Symbolic�the quantity of symbols associated with an artifact, equivalent to size

metrics. Examples include the number of implementation language keywords,

datatypes, variable names, or number of characters used.

2. Structural�the quantity of unique symbol arrangements and relationships be-

tween those symbol arrangements. An example is the structure of source code
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in a particular implementation language for which the symbol arrangements are

constrained by the language syntax.

3. Data�the quantity of individual data elements and their movement within an

artifact or between artifacts, e.g., class attributes and their use within class

methods within an object oriented language.

4. Functional�the quantity of unique arrangements and relationships between

structural and data elements within an artifact, e.g., the methods associated

with a particular class in an object oriented language.

5. System�the quantity of unique arrangements and relationships between func-

tional elements within a system. Examples include the classes used and the

associations between those classes in an object oriented program, the classes

and relationships between them in a software component, or the arrangement

of systems within a system of systems.

In addition, considerations of time for each of the above categories leads to a grouping

of metrics into static or dynamic metrics. Static metrics are those that measure

properties of software that exist independent of execution of the software and dynamic

metrics measure those properties that exist only upon system execution.

In the remaining sections of this chapter we will look at existing metrics

grouped by programming model and de�ne a set of metrics for comparing archi-

tectures. We consider metrics that are a combination of symbolic, structural, and

functional complexity with consideration for both static and dynamic characteristics.

4.2.2 OBJECT-ORIENTED SOFTWARE METRICS

The most familiar object-oriented software metrics are the suite of metrics

de�ned by Chidamber and Kemerer [1994] and referred to as �CK Metrics.� Much of

the subsequent work on object-oriented software metrics derives from the CK metrics,

e.g., Perepletchikov et al. [2007b], Vernazza et al. [2000], Lilienthal [2009]. The CK

metrics are de�ned as follows:
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1. Weighted Methods per Class (WMC)�the sum of the complexities of the meth-

ods within a class. Frequently, this is computed as just a count of the methods

within the class. High values for WMC imply increased complexity because en-

tities with a large number of properties are assumed to be more complex than

those with fewer properties.

2. Depth of Inheritance Tree (DIT)�the count of the levels of inheritance from

the root to the class being measured. Large values of DIT indicate a deeply

nested inheritance tree which is structurally complex. Such deep nesting can

be a source for cascade e�ect change when modi�cations occur higher up the

tree. Additionally, changes in the measured class must take into account all of

the ancestor methods and attributes to avoid con�ict.

3. Number of Children (NOC)�the count of the immediate subclasses derived

from the class being measured. Like DIT, large values of NOC indicate high

complexity. Change made in the parent class will ripple down to the children

and the potential for con�ict is increased when a larger number of derived classes

from a single parent are present.

4. Coupling Between Objects (CBO)�the count of the number of other classes

to which the measured class has an association other than inheritance. A high

degree of coupling between classes increases complexity because changes in a

single class have the potential to in�uence all of the classes coupled to the

changed class.

5. Response for a Class (RFC)�for each method in the measured class count the

number of methods called external to the class. RFC is the sum of the counts

for all methods within the measured class. A large response set for a given class

is another form of coupling complexity with coupling between the methods

invoked as a result of a single invocation. This complexity can lead to defects

when modi�cations are made because of missed calls, changed parameters, or

other modi�cations that may invalidate the use of a particular method.
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6. Lack of Cohesion in Methods (LCOM)�compare the methods in a class pair-

wise, counting the number of pairs which use no instance variables in common

and separately counting the number of pairs using instance variables in com-

mon. The di�erence between the �rst count and the second is the LCOM and

is set to zero if negative. High values of LCOM indicate that a class may be

doing too many di�erent functions. This leads to higher complexity if some

of the functionality is not con�ned to the high LCOM class because making

modi�cations requires �nding all occurrences of the functionality. This can lead

to increased defects if all occurrences are not accounted for. Additionally, sep-

arating out functionality for reuse is not possible for functionality contained in

classes with high LCOM values.

The CK metrics are not without problems. Some of these are indicated in

Riguzzi [1996]. Much of the subsequent work based on CK metrics is related to

correcting some of these problems. Notable in this is the work of Briand et al. [1998,

1999] which attempts to re�ne measurements and interpretations of coupling and

cohesion.

Other metrics approaches for object-oriented software are based on measure-

ments of information �ow through the source code. This type of metric was popular-

ized by the work of Henry and Kafura [1981]. Of particular interest is the de�nition of

the complexity of a procedure as l × (fi × fo)
2, where l is the length of the procedure

and fi and fo are the fan-in and fan-out for the procedure2, respectively. This metric

for complexity combines a metric for the internal complexity, l, and a metric for the

external complexity of the procedure based on how strongly coupled the procedure

is to its external environment. This inference from coupling to complexity, similar to

the CK metric CBO, is based on the idea that the more strongly coupled a procedure

is to its environment, the more di�cult it will be to comprehend the full e�ect of

a modi�cation to either the environment or the procedure itself. Modi�cations are

2The concepts of fan-in and fan-out are de�ned by Henry and Kafura in terms of information �ows
and data structures. Fan-in is the number of information �ows into a procedure plus the number
of external data structures read by the procedure while fan-out is the number of information �ows
from the procedure plus the number of external data structures updated by the procedure.
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also likely to cause change to ripple through the couplings and such a procedure is

considered to be more complex than one with fewer connections.

4.2.3 COMPONENT-BASED SOFTWARE METRICS

Component-based software is a means of constructing large, complex software

systems through composition. A component is de�ned as a self-contained, prefabri-

cated unit of composition capable of being deployed independently by third parties

[Kharb and Singh, 2008]. The functionality o�ered by a component is accessible via

well-de�ned interfaces where the actual implementation of those interfaces is inacces-

sible to users of the component. Measuring complexity in component-based systems

must account for these characteristics.

Complexity metrics for component-based systems vary widely in de�nition.

The metrics de�ned in Kharb and Singh [2008] treat components as black boxes

and focus on the interactions between components by de�ning metrics for the ratio

between incoming and outgoing component interactions, interaction density, total

number of interactions, actual number of interactions, and normalized complexity

of incoming and outgoing interactions for the complete system. Another approach

proposed in Vernazza et al. [2000] de�nes metrics similar to the CK metrics but with

a component interpretation.

In Jiao et al. [2008], complexity metrics are de�ned for components, compos-

ites, and dependencies. Complexity for components is de�ned through the number of

operations and the number of parameters de�ned by a component while dependency

complexity is de�ned through the summed complexities of individual data types de-

�ned by a component and based on the position of a type in a data type graph.

Composite complexity is de�ned via a weighted dependency graph where edges be-

tween components are dependencies and the edge weights are measures of in�uence

between the components.

The approach outlined in Gill and Balkishan [2008] de�ne a Component De-

pendency Metric counting the number of dependency paths between a component and

all other components in the system. The metric is computed by the ratio of the actual



40

count of dependency paths to the maximum possible number of paths. The second

metric is the Component Interaction Density which is the ratio of the total number

of direct interactions between components to the total number of components.

4.2.4 SERVICE-ORIENTED SOFTWARE METRICS

Services as we have de�ned them are stateless, logical entities accessed via

messaging. Metrics for services must be de�ned to address the characteristics of

services as given in the de�nition. With service-oriented concepts being relatively

recently developed, metrics for services are less well-de�ned.

In Perepletchikov et al. [2007a], the authors propose a formal model for service-

oriented computing and then use that model to de�ne a collection of metrics in

Perepletchikov et al. [2007b] for measuring the maintainability of service-oriented

designs. These metrics are de�ned as follows:

1. Weighted Intra-Service Coupling Between Elements�count of the inbound and

outbound connections between pairs of implementation elements3 within a ser-

vice. The weighting is based on the types of the elements in the connection,

e.g. procedure, class, interface.

2. Weighted Extra-Service Incoming Coupling of an Element�count of the in-

bound connections from implementation elements of other services to a single

element. The weighting is based on the type of the relationship between the

elements

3. Weighted Extra-Service Outgoing Coupling of an Element�count of the out-

bound connections to implementation elements of other services from a single

element

4. Extra-Service Incoming Coupling of Service Interface�count of the number of

external elements using a particular service interface

3An implementation element is any software construct, other than a service, that would provide
the implementation of a service
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5. Element to Extra-Service Interface Outgoing Coupling�count of the number

of service interface implementations a given element is a part of

6. Service Interface to Intra-Element Coupling�count of the number of direct

relationships a service interface has with its implementing elements

7. System Partitioning Factor�the ratio of the count of elements belonging to at

least one service to the total number of elements

8. System Purity Factor�the ratio of the count of pairwise intersections of all

services with respect to implementation elements resulting in the empty set

and the count of all services

9. Response for Operation�count of the implementation elements and other ser-

vice interfaces executed in response to invocation of an operation in a service

interface for all possible parameters

Additionally, eight metrics for computing the previously described metrics for aggre-

gates of services are de�ned. The metrics de�ned here are proposed and no actual

empirical data is provided for how these have been used in an operational service-

oriented system. However, the authors describe validation of the Weighted Intra-

Service Coupling Between Elements metric using a property-based software engineer-

ing measurement framework but the validation is simply to show that the de�nition of

coupling has not been violated by the metric. These metrics are de�ned at a very low

level of granularity and make assumptions about service implementations that may

not always be satis�ed, namely that the implementation of a service may have ele-

ments that are in use by other service implementations or are called directly by other

implementations. Based on this observation, we note that the System Partitioning

Factor and the System Purity Factor show some utility as a measure of how cleanly

the service interfaces are divided. We also emphasize that the authors have made

parallels with some of their metrics and the CK metrics, i.e., the coupling metrics

and the Response for Operation metric described above.
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Another set of service-oriented complexity metrics are de�ned in Rud et al.

[2006] as

1. Network Cohesion in the System (NCY)�count of the connections between

nodes where a connection is a service consumer invoking against a service

provider. This metric attempts to capture complexity through the degree of

coupling in the system so that large values of the metric correspond to greater

complexity.

2. Number of Services Involved in a Compound Service (NSIC)�count of the

number of services used to create a compound or composite service (in our

terminology). Composite services create new functionality by stringing together

existing services. This metric attempts to capture complexity through the size

of the composite service as measured by the count of constituent services. Large

values for the metric are assumed to correlate to greater complexity.

3. Services Interdependence in the System (SIY)�count of the pairs of services

having a dependence relationship. A high degree of interdependence indicates

that the service granularity may be too �ne. This interdependence contributes

to complexity through the necessity of having to ensure that dependencies are

satis�ed when modifying the system.

A collection of metrics related to the criticality and reliability of services within a

system are also de�ned but we will not discuss them here. We observe that high

values of NSIC can be viewed as either good or bad depending upon the perspective.

From a system perspective, high values of NSIC can be viewed as a good thing since

the complexity of the system is potentially encapsulated in composed services rather

than lower level atomic services. From the individual service perspective, high values

of NSIC can indicate that modi�cation of any of the constituent services may have a

larger impact than anticipated. Additionally, consideration of the SIY metric in con-

junction with the NSIC metric may give insight into how well the composed services

manage the interdependence between the constituent services at a system level. At
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the individual service level, high values of SIY can indicate that modi�cation of the

service may be di�cult or have impact on all services with dependence relations on

the modi�ed service. The above metrics can be seen to be related (at least in princi-

ple) to the CK metrics. As in the proposed metrics of Perepletchikov et al. [2007b],

the metrics de�ned here are not supported by empirical data from an operational

system and the authors do not present any validation data.

Finally, Hofmeister and Wirtz [2008] de�ne two sets of metrics associated with

service-oriented systems. The �rst set are considered basic measures to be used in

formulating more complex metrics and include

1. Number of Services�count of all services. Higher numbers of services are as-

sumed to indicate higher complexity

2. Number of Service Consumers�count of all services functioning only as con-

sumers. No inference is made on the values obtained.

3. Number of Service Providers�count of all services functioning only as providers.

No inference is made on the values obtained.

4. Number of Service Aggregators�count of all services functioning as both a

consumer and a provider. The values obtained here can potentially overlap

with the counts of service providers and consumers.

5. Coupling of Service�count of other services used by the implementation of

a service. High values can indicate potential for change impact if any of the

included services change their interface.

6. Inter-Service Coupling�count of the number of connections between two given

services. This count includes both the incoming and outgoing service request

channels. No inference is made on the values obtained.

The second set of metrics are built up from the basic measures and include

1. Service Coupling Factor�sum of the Coupling of Service metric over all services

normalized by the Number of Services metric. This metric intends to capture
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the overall coupling within the system. Low values indicate a low degree of

coupling and are intended to indicate a more modi�able system.

2. System Service Coupling�sum of the Coupling of Service metric over all ser-

vices normalized by the maximum number of couplings possible in the system

as computed by the product of Number of Service Consumers and Number of

Service Providers. The metric is intended to capture the amount of interaction

between services that do not occur via mediation, i.e., through a service ag-

gregator. High values indicate a complex system because the coupling between

services is direct.

3. Extent of Aggregation�ratio of the number of pure consumers coupled with

aggregators to the number of pure consumers coupled to all providers, i.e.,

pure providers and aggregators. Low values represent low aggregation which is

assumed to be associated with a more complex system in a way similar to the

System Service Coupling.

4. System's Centralization�the di�erence between consumer coupling and the

coupling due to aggregation divided by the overall consumer coupling. An

adjustment is made by deducting the count of pure consumers from the denom-

inator value. This adjustment is intended to compensate for the fact that all

service consumers are coupled by de�nition to service providers. An additional

adjustment is made in the numerator to penalize excessive use of aggregation.

The metric intends to capture the degree of centralization, as implemented

through aggregation, used to manage complexity. High values indicate a higher

degree of centralization and the assumption is that under most conditions, this

is favorable.

5. Density of Aggregation�the sum over all aggregators of the logarithm of the

ratio of the number of potential inbound service calls to the total number of

potential inbound and outbound calls. This metric is intended to capture how

much aggregation use is devoted to true aggregation since aggregators may be
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used for other purposes. The metric must be used in conjunction with the

System's Centralization metric to capture the �goodness� of the aggregation

with respect to centralization.

6. Aggregator Centralization�computed by subtracting the ratio of non-mediating

aggregators4 to total aggregators from one. The metric is intended to capture

the degree to which centralization is handled by non-mediating aggregators.

This metric is to be used in conjunction with the System's Centralization and

Density of Aggregation metrics to support the interpretation of the �goodness�

of centralization.

Each of the metrics in the second set are de�ned to capture an aspect of complexity

associated with modi�ability within a service-oriented system. The authors have

applied these metrics to an industrial project to guide the design of a business process

implementation and refer that implementation to a composite application reference

architecture. The stated result is that the metrics were of value by helping to identify

poor design and providing a rationale for re-design prior to the actual implementation.

There are several issues with this particular set of metrics that make them

di�cult to consider for use. First, computing many of the metrics requires informa-

tion or access to the internals of a service implementation. This information may

not be available or extremely di�cult to obtain. Second, the point of view of the

metrics are from within a single organization comprising the enterprise. In reality,

the real value of service orientation is that since many enterprises consist of mul-

tiple independent organizations, services that are governed by negotiated contracts

(Service Level Agreements) around the use and management of those services that

cross ownership boundaries enables more e�cient interaction [OASIS, 2009] . Third,

the interpretation of centralization and aggregation metrics is potentially mislead-

ing without consideration of the nature of the enterprise. An enterprise consisting

of federated systems, each of which may be considered a separate entity, will not

exhibit centralization as expected but will show centralization through the service

4A non-mediating aggregator is a service acting as both a consumer and provider but which
provides capabilities that go beyond just mediating calls to other services.
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mechanisms used to federate the enterprises. Additionally, systems with redundant

mechanisms for dealing with reliability and availability will skew metrics for aggre-

gation. Consider the case of a load balancing mechanism. Such a mechanism is an

aggregator, can be considered to be a service, and may exist in multiples to provide

protection against failure. However, the use of multiples will give misleading values

for the aggregation metrics since each load balancer instance is connected to the same

set of services.

All of the metrics for service-oriented architectures described above take a

common approach to characterizing the complexity of the system through some com-

bination of external service features and a knowledge of the internals of the service

implementation. Where those internals are not accessible, these metrics become dif-

�cult or impossible to compute. Additionally, the authors in all three sources use the

CK metrics directly or as interpreted for components to construct their metrics. Of

particular note is that while there is a similarity between components and services,

the fundamental di�erence not captured in the above metrics is that a component's

interface is not necessarily a logical interface and by de�nition a service interface is

always a logical interface5. In Chapter 6, we de�ne metrics to capture the complexity

of using a service-oriented approach and relate that complexity to a cost or level of ef-

fort required to make the necessary changes in complexity associated with integration

activities.

4.3 Summary of Metric Approaches

The previous sections have identi�ed many di�erent approaches to measuring

and computing metrics on software in di�erent forms and on di�erent architectural

arrangements of software. A notably missing feature of all of the previous metrics is a

connection between an economic measure of the impact of changing the software and

the complexity of the software exposed to those making the change. Since integration

5A logical interface is one representing functionality that may not directly map into an underlying
implementation but which can be made physical through association with location and connection
information [].
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is inherently about creating a product that delivers value that is higher than the

cost of the e�ort of creating the product, we are seeking an architectural metric that

captures an architecture's intrinsic cost per unit of increased capability. In the next

chapters we show how such a metric can be computed and in subsequent chapters use

actual integrations to show the utility of the metric.
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5. SERVICE ORIENTED INTEGRATION APPROACH

In this chapter we describe the design and implementation of our integration

architecture based on service-oriented principles. The �rst section covers the architec-

ture design including the basis for our requirements on the architecture and details

of the design. The second section discusses the implementation approach for the

architecture and the realization of that approach.

5.1 Architecture Design

This section describes the design of an architecture based on service-oriented

principles. We describe the architecture according to accepted guidelines for soft-

ware architecture documentation and include an analysis of business and technical

requirements, the design approach, and the design details.

5.1.1 REQUIREMENTS

Deriving requirements for a general integration architecture is di�cult because

we are not designing for a speci�c product or for a particular customer. Instead, we are

creating a generalized prototype architecture to illustrate how service orientation can

be used to integrate new software capabilities into the system of the robot. Because

of this lack of speci�city, we do not have a set of clearly delineated stakeholders from

which we can derive the requirements on the architecture. However, we can identify

general categories of stakeholders and use an understanding of the motivations of

typical members of those categories to frame a set of architecture quality goals or

quality attributes, i.e., desirable characteristics exhibited by the architecture, which

constitute architectural goodness for integration purposes. At the intersection of the



50

quality attributes for all of the stakeholder categories is a core set of quality attributes

we will consider fundamental with respect to integration on robotic platforms.

For robotic systems, one categorization of stakeholders is

1. Researcher/Developer

2. Commercial Developer

3. System Integrator

4. End User

In the next few paragraphs, we present a pro�le of each stakeholder category and

identify quality attributes that support the pro�le description's expectations of the

architecture. A description of the quality attributes used below can be found in

Appendix B.

5.1.1.1 Researcher/Developer

A researcher in the robotics �eld seeks to try out various capabilities in a con-

trolled environment with the idea of advancing knowledge and utility in the �eld of

robotics. These experimental variations may be new sensor systems, new program-

ming models, new development languages, or even new mobile platforms, but are

generally things for which an appropriate interface or usage model may not exist.

Part of the activity of research is to de�ne and justify such interfaces and usage mod-

els. Furthermore, researchers work within severe budgetary constraints and so look for

solutions that are cost e�ective and perform well but are less concerned with the ease

of implementation. These constraints also drive a need for cross-platform usability to

accommodate legacy platforms of varying computing capabilities. A key feature of

the majority of work in robotics research is that integration is not the primary focus

of the research and so �exibility with respect to faster and easier integration o�ers a

bene�t in reduced time and budget spent on integration allowing for more time and

budget available for the central research concern.
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From this pro�le for the Researcher/Developer we can identify the following

quality attributes:

1. Scalability

2. Modi�ability

3. Extensibility

4. Performance

5.1.1.2 Commercial Developer

A commercial developer is in the business of making money and so is concerned

with time-to-market and ease of adding new features as needed to compete in the

marketplace. Additionally, a commercial developer looks for areas of di�erentiation

to make their product more appealing than their competition. Commercial developers

are also very concerned about the overall lifecycle cost of the platform. If maintenance

costs are extremely high, the product may present a loss for the corporation and thus

not be a product that stays long in the marketplace. Further complications arise for

the commercial developer in the market impression of the product. A product that

is viewed as being buggy, hard to use, or di�cult and expensive to maintain will

not be widely accepted and will again represent a loss for the commercial developer.

Like the researcher, the commercial developer is also interested in the ability to reuse

the same software components on platforms of varying computing capabilities while

achieving comparable performance levels.

From this pro�le for the Commercial Developer we can identify the following

quality attributes:

1. Scalability

2. Maintainability

3. Reliability

4. Extensibility
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5. Modi�ability

6. Performance

5.1.1.3 System Integrator

A system integrator (SI) is responsible for bringing various previously devel-

oped components together into a coherent functioning system. In general, system

integrators do not develop new components but prefer to contract out any such de-

velopment when required while keeping cost low so as to maximize the margin on

generally low margin �xed price contracts. This ability to outsource is facilitated

when the SI has components that can be handed to the third party development

group intact or with a simpli�ed interface. Further enhancements to the SI ability

are through the ability to provide components without a strong dependence on the

computing platform. One area where system integrators di�er from commercial de-

velopers is that frequently a system integrator must use a robotic platform in the

context of a larger system. This larger system context places additional demands

on the underlying computational resources and requires the SI to worry about the

impact of each integrated component on the overall performance of the system.

From this pro�le for the System Integrator we can identify the following quality

attributes:

1. Scalability

2. Maintainability

3. Reliability

4. Extensibility

5. Modi�ability

6. Performance

7. Ease of use
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5.1.1.4 End User

An End User does not generally care about the software inside a robotic plat-

form other than how well it functions and how easily new features can be added

when needed. End Users also worry about cost and reliability since an expensive

platform that does not function reliably is a waste of money. Reliability is important

to End Users since maintenance costs and frequent maintenance activities may make

the platform unusable. Maintenance costs also can make platform size a concern for

the user. A large platform tends to embody hardware components that cost more

to replace while smaller platforms may make use of more readily available, cheaper

components. This is not always the case since some components needed in the sizes

suitable for smaller platforms may be extremely costly. End Users are also generally

concerned with how well the system performs since a reliable system that cannot

complete tasks in a reasonable amount of time is worthless.

From this pro�le for the End User we can identify the following quality at-

tributes:

1. Reliability

2. Maintainability

3. Performance

4. Ease of use

5.1.1.5 Stakeholder Quality Attributes Summary

In the following table, we have summarized the quality attribute expectations

for each of the stakeholder categories. From Table 5.1 we observe that the single

quality attribute present in all stakeholder categories is performance. However, if we

consider that the End User derives bene�t from the outcome of the work provided

by the other stakeholder categories and does not interact directly with the architec-

ture, then we can identify three additional quality attributes in common across the
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Researcher Commercial System End User
Developer Developer Integrator

Extensibility X X X

Maintainability X X X

Modi�ability X X X

Performance X X X X

Reliability X X X

Scalability X X X

Usability X X

Table 5.1: Stakeholder quality attributes

Researcher/Developer, Commercial Developer, and System Integrator stakeholders.

Speci�cally, those quality attributes are

1. Extensibility,

2. Modi�ability, and

3. Scalability

From these quality attributes and the stakeholder categories we can derive require-

ments that an architecture supporting integration on robotic systems must provide

mechanisms to enable changes to the system functionality through the addition of

new components or through modi�cation of the existing components. Additionally,
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the architecture must provide mechanisms that allow the system to be scaled for use

under di�ering resource size constraints. This latter requirement does not say that

the architecture should support the same functionality on the small scale as on the

large scale but that the integration mechanisms should be consistent or equivalent at

the di�erent scales.

In the next section, we describe the design of our architecture and show how

the stated requirements are met by the particular choice of service orientation in the

architecture.

5.1.2 DESIGN

5.1.2.1 Service Oriented Architectures

The design of our architecture is based on the view of a robotic platform as

an enterprise system. Enterprise systems consist of a collection of independent, co-

operating elements interacting to provide value to the enterprise as a whole rather

than the individual element. The speci�c model of this cooperative interaction we

use is called �service orientation� because the elements of the enterprise interact by

providing and using �services.� Architectures based on service orientation are called

Service Oriented Architectures or SOA. Service orientation is an example of the �Ser-

vice� and �Collaboration� architecture patterns. All interactions occurring across the

enterprise are considered to be through the o�ering and consumption of services.

These service o�erings are accessible through well-de�ned and published interfaces.

The entity publishing such an interface is termed a �service provider� and the element

making use of the interface to access a service is termed the �service consumer.� An

important consideration to note is that SOA is a model for structuring relationships

between elements of the enterprise and should not be considered a product that can

be dropped into place or purchased but rather as de�ned in OASIS [2009, p.8, chapter

2]

�Service Oriented Architecture (SOA) is a paradigm for organizing and
utilizing distributed capabilities that may be under the control of di�erent
ownership domains.�
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From a software perspective a service is a piece of computing functionality accessi-

ble through the interface published by the service provider. The functionality may

be a low level function such as a measure conversion or it may be a higher level

function such as processing a loan application. A service may be made up other

services accessed in a particular sequence or based on outcomes of earlier results or

the occurrences of speci�c events. Such services are termed �composed services� with

the �rst type described as �orchestrated� and the second type as �choreographed.�

A fundamental characteristic of services is that a potential service consumer must

be capable of locating services through a mechanism called �discovery� enabled by a

service provider publishing details of the service interface into a �service repository.�

Enabling a SOA requires the presence of some key elements including infras-

tructure to support the interaction mechanisms and identi�cation of candidate ser-

vices. Additionally, a set of services provided by the infrastructure known as �in-

frastructure services� are considered essential to provide capabilities such as logging,

health and status monitoring, performance monitoring, service repositories support-

ing service identi�cation, and other general capabilities required by all service par-

ticipants. One mechanism for supporting service interactions is called an �Enterprise

Service Bus� or ESB. An ESB provides the underlying communication capabilities

and infrastructure services in support of those capabilities. ESBs may consist of mul-

tiple communication protocols with each protocol carried on its own bus or an ESB

may consist of multiple ESBs connected through protocol bridging services. Service

requests originating in one bus accessing services in other buses are mediated by

the protocol bridging services. In this way, ESBs can be expanded to include larger

portions of an enterprise or to federate separate enterprises into a larger enterprise.

For robotic platforms, the enterprise perspective is appropriate because it al-

lows for the identi�cation of independent elements in the platform interacting with

each other to create functionality that make up the robot capabilities. In the next few

paragraphs, we will expand this concept into the design of a service-oriented archi-

tecture supporting the quality attributes of extensibility, modi�ability, performance,

and scalability.
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Figure 5.1: Robotic system service categories including the ESB

5.1.2.2 Robotic Services

Candidate services for a robotic enterprise can be identi�ed by observing that

robots consist of a disparate collection of sensors, controllers, other hardware, associ-

ated software drivers for the hardware, support libraries, and application code. All of

these elements work together to give the robot its capabilities. We use the types of el-

ements making up the robot to categorize the types of services available on a robotic

platform. This categorization is depicted in Figure 5.1 below and a description of

each �service package� follows.

Coordination Services Infrastructure services related to management of the enter-

prise. This management includes ensuring that mission resources are available,

data routing is handled, con�guration data is applied, and coordinates the in-

teraction between other services to ensure that the system is functional and the

right resources are available at the right time. Besides the duties listed above,

the coordination of service composition functions such as orchestration, fault
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management, and health status checking of services are handled by infrastruc-

ture services..

Con�guration Services Services for the use and management of con�guration data

in the system. These services provide a means to isolate con�guration informa-

tion in such a way that con�gurable properties of the system and the individual

services may be changed in the following ways:

1. Statically, at compile time � used for those basic properties of other ser-

vices that are immutable across platforms.

2. Dynamically, at system start � used to initialize any con�guration infor-

mation and allow for system customization by changing its con�guration

at startup.

3. Dynamically, during execution � allows the system to recon�gure with-

out undergoing a restart; requires careful management since some com-

binations of con�guration values may lead to an unstable or inoperable

system.

In addition to managing con�guration information, this service category can

provide services to handle persistence. These persistence services allow for crit-

ical system state data to be written out to permanent store when the data

changes or when the context the data is useful in has changed. This persistence

mechanism is natural since we can envision dynamic con�guration information

as persisted execution state data and retrieval of the con�guration data is the

retrieval of persisted state information.

Control Services Services acting as abstractions for control mechanisms used in the

platform. This includes steering mechanisms, servo controls, actuator controls,

telescoping arm controls, camera controls, sensor controls, and motor controls.

Mission Services Services to de�ne and manage missions which are speci�c sets of

sensors, sensor integrations, hardware, display capabilities, and path de�nitions
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(if needed) combined into a single entity known as theMission. Mission services

resemble and can be realized as choreographed and orchestrated services.

Data Services Services providing an abstraction of data streams from sources. The

source might be an external sensor such as a camera, an internal sensor such

as an encoder disk, or an external data source such as a command stream from

a remote controller. A data stream is associated with a particular source to

facilitate use of the data but we distinguish between the data provided by the

source and the source itself. Some data streams will have a speci�c destination

such as a command sequence to the controller function and such data streams

will have a notion of source and sink (destination). Data services facilitate

operations such as changing the data sink on the �y or adding additional data

streams connected to the same sink.

Integration Services Services to encapsulate data integration or fusion schemes.

These services are intended to provide the ability to easily dynamically switch

in, switch out, and chain data integration algorithms. For instance, we might

want to apply various video processing techniques to a data stream originating

from a video source, integrate that modi�ed stream with a data stream from a

gas sensor, and �nally output a third data stream consisting of the processed

video data and the gas data. A consumer for this service might be a display

service or a mission service. Additionally, we might want to apply various

statistical manipulations to the video data and be able to switch this capability

in and out of the processing chain at will.

Hardware Services Services to encapsulate hardware access. These services pro-

vide a typical hardware abstraction layer (HAL) as used in most embedded

devices but do so through a service interface. The services are responsible for

ensuring that all available hardware is con�gured properly, ensuring that hard-

ware capable of heartbeat monitoring is monitored, and that hardware faults

are properly handled before reaching the other software services (if necessary).
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Sensor Services Services to encapsulate sensor managment, discovery, and use.

This includes sensors for monitoring the internal state of the platform and any

sensors used to sense the external environment. Note that we have separated

the data provided by the sensors from information about the sensor itself. This

separation provides �exibility in how we use both the sensor and the sensor's

data. One use of this separation is for a data stream not associated with any

sensor, such as a simulated data stream.

Display Services Services to encapsulate display attributes and display manage-

ment capabilities. These services ensure that the presentation of any data or

images conforms to the available display hardware capabilities. Since it is an

abstraction of a presentation layer, display services can also be used to con�gure

and manage non-visual presentation of data such as audible data, haptic data

or other sensor signals.

Rules Services Services to make use of rule inference engines. These services pro-

vide a capability similar to business rules engines used in business software

processes. The use of rules services provides the capability to prede�ne certain

behaviours in terms of inference rules. So, for example, we could specify rules

about how the Display Service con�gures itself based on information provided

by the Hardware Service without hard-coding this information into the Display

Service. Thus, a rules service provides a means of implementing extensibility

qualities in the system.

5.1.2.3 Other Architecture Elements

Service consumers need some means of discovering services available for use

and service providers need some way to make known what services are o�ered. These

issues are addressed via the �discoverability� mechanisms provided in the infrastruc-

ture of the SOA. For our architecture, we initially specify the use of location services

as a discoverability mechanism. These location services provide a level of indirection

that supports decoupling of the service consumer from the service provider. This de-
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Figure 5.2: Call Sequence for using a location service to access a service

coupling provides �exibility in the choice of discovery mechanism and allows extension

of the architecture beyond the immediate enterprise boundaries since most location

service implementations support a form of federation. This federation allows di�erent

location services to function in collaboration and provide the appearance of a single

integrated service. An example of the use of a location service is provided in Figure

5.2. Additionally, since robotic platforms integrate software from various sources and

may not have access to the source code, the architecture must provide some means

of access to this legacy functionality in ways that do not require modifying existing

source code. This problem is largely resolved through the de�nition of the service

interface and packaging of infrastructure and service handling code. Finally, patterns

of interaction exist between service participants. Since SOA interactions are e�ected

by messaging between the participants, these interaction patterns are called Message

Exchange Patterns (MEPs). Several types of MEPs exist but the most common ones

are [Erl, 2009a], [Josuttis, 2007]
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1. Request/Response including synchronous and asynchronous variations

2. Publish/Subscribe

3. Oneway or Fire-And-Forget including single destination, multi-cast, and broad-

cast variations

4. Lightweight Events

5. Point-to-Point

Note that the Lightweight Events and Point-to-Point patterns are variants of Oneway

and Request/Response. We can assume that di�erent service participants will have

di�erent MEP requirements and so the architecture must provide support for those

MEPs in use and an ability to add new MEPs as they are encountered or needed.

The use of messaging services such as Java Messaging Service (JMS), CORBA, IBM

MQSeriesTM, and ZeroC IceStormTM provide capabilities for most of these patterns

and also provide capabilities to form more complex MEPs from the basic patterns.

With these design concepts and constraints speci�ed, we look at the implementation

of the architecture described above in the next section.

5.2 Architecture Implementation

We turn now to the implementation of the design concepts previously de-

scribed. The implementation consists of several phases including

1. Messaging infrastructure selection

2. Connection protocol abstraction

3. MEP creation

4. Service creation

The creation of services was done in the context of speci�c real world projects and so

service identi�cation was performed based on the usage requirements of the projects.

We describe the service implementations for these projects in Parts III and IV.



63

5.2.1 BASIC INFRASTRUCTURE IMPLEMENTATION

5.2.1.1 Messaging Infrastructure

We began the implementation with a review of candidate messaging systems to

provide our basic interaction infrastructure. While it may be tempting to create such

an infrastructure from the ground up, the issues and pitfalls associated with building

a reliable, fully capable, and supported messaging system make such an approach

neither time nor resource e�ective. This concern is validated if we consider the avail-

ability and quality of existing messaging systems. Thus, we evaluated JMS, CORBA,

and ZeroC IceStormTM as candidate messaging systems. These three technologies

represent open source and freely available capabilities that are well-supported and

well-documented.

Java Messaging System (JMS), as its name suggests, is primarily focused on

messaging in Java-based systems. JMS can be used with other systems but the in-

terfaces are more di�cult to work with and the addition of translation between Java

and non-Java systems adds additional latency to roundtrip request times. Addition-

ally, the ability of JMS implementations to be scaled down for use in constrained

computing environments is limited.

CORBA represents a mature technology for working with object oriented sys-

tems in an implementation language independent manner. Open source implemen-

tations of CORBA are available such as the ACE-TAO implementation. CORBA is

implemented according to an Object Management Group (OMG) speci�cation and so

enjoys some level of standardization. However, this is also a drawback for CORBA.

The OMG is a consortium standards group and so commercial participants must all

come to agreement on the content of the speci�cations before acceptance. This �group

think� has a tendency to leave some areas of the speci�cation ambiguous as the com-

mercial participants look to forward their own agendas to protect their investments

or market share. Finally, CORBA scalability to constrained computing environments

is limited. The ACE-TAO implementation has the ability to be stripped down to a

bare bones implementation but even that minimal con�guration is still quite large.
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The ZeroC IceTM family of products from ZeroC are relative newcomers to

the middleware technology space. However, the company was founded by former

CORBA experts and was founded on the premise that while CORBA represents a

useful approach to connecting distributed computing capabilities, it su�ers from the

limitations described above and so they set out to correct those limitations by drop-

ping adherence to the CORBA speci�cation. The ZeroC product line includes the

ZeroC IceTM product which provides the basic distributed, point-to-point capability,

the ZeroC IceStormTM product to provide a messaging capability with message quality

of service attributes, and IceBoxTM which provides a capability to start other services

on demand. The ZeroC IceStormTM product provides all of the capabilities required

to support service orientation using messaging including guaranteed delivery, messag-

ing mechanisms to enable MEP creation, topic creation, federation, and persistent

topics and messaging. Additionally, ZeroC has started o�ering products speci�cally

targeted to providing service oriented architecture infrastructure and products that

are designed to be used in constrained computing environments.

Based on the limitations of JMS and CORBA, and the capabilities of the ZeroC

product line, we chose the ZeroC IceStormTM as the basis technology for the archi-

tecture infrastructure. All of the implementation details discussed subsequently are

built on top of the ZeroC IceStormTM products. However, that choice can be changed

or added to because of the implementation approach for creating connections. Use

of ZeroC products requires use of their Interface Description Language called �Slice.�

All components that require direct interaction with the messaging infrastructure are

described in the Slice language and then converted by a compiler into source code for

compilation in a target implementation language.

5.2.1.2 Connection Protocol

Despite the messaging infrastructure technology selection above, we wanted to

keep the details of that technology hidden from service participants and enable an abil-

ity to switch out or add additional technologies. One way of doing this encapsulation

is to abstract the connection in such a way that the infrastructure provider/maintainer
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creates speci�c instances of connections but the interface remains the same to users.

This is illustrated in Figure 5.3 below. In Figure 5.3, the class relationships hold for

Figure 5.3: Representation of the connection component

both the service consumer and the service provider. The description of the classes is

1. Application Code�Consumer or provider of the service functionality

2. ServiceParticipant_Proxy�Call interceptor to hide the call details for the ser-

vice functionality. This class creates the appearance of local calls for both

consumer and provider.

3. MessagingProxy�Handles access to the messaging infrastructure and imple-

ments the appropriate message exchange protocols

4. IceStormAdapter�Connection wrapper implemented over the IceTM and IceS-

torm TM protocol

5. IceStorm Libraries�Implementations provided by ZeroC for the IceTM protocol

and IceStormTM functionality
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6. SOA_Base�Interface de�nition for the abstract connection

The interface de�nition for SOA_Base consists of methods that support the use of a

transport protocol. The Slice de�nition of SOA_Base is

interface SOA_Base

{

// Apply whatever configuration or setup is required to prepare

// the protocol object for connection

void configure();

// Make a connection and be ready to start communications

void connect();

// Reuse an existing connection that has been disconnected

void reconnect();

// Disconnect and stop communications. This call should not

// remove the resources related to the connection so that

// connect() or reconnect() can reuse the same connection.

void disconnect();

// Shutdown the connection, doing whatever is necessary to

// clean up any resources still in use. After this call,

// connect() or reconnect() cannot be called on the connection

void shutdown();

// Ping the other end. Intended for status check or for connection

// check prior to executing a request. This may be a

// no-op for some protocols.

void ping();

};

The IceStormAdapter class implements the SOA_Base interface using the capabilities

provided by the ZeroC IceTM and ZeroC IceStormTM libraries. If we needed to add

support for JMS, CORBA, or even CANBus, we would create a new protocol adapter

implementing SOA_Base using the libraries provided by the speci�c protocol. This

allows us to keep multiple protocols available during runtime to handle di�erent types

of service calls. The call sequence with the connection component is shown in Figure

5.4. In the sequence in Figure 5.4, the CallProxy and MessagingProxy change based

on the service interface but in the implementation the change involves only the service

name, service call parameters, and return type. Because of this consistency we can
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Figure 5.4: Call sequence for consumer and provider

de�ne boiler plate code that can be reused to generate new services. Additionally,

the ProtocolAdapter and MessageBroker only change if the protocol is to be changed

and in some cases the MessageBroker component may not exist. These di�erences are

accounted for in the ProtocolAdapter and in the MessageProxy so that the addition

or removal of speci�c protocols has only a very limited impact.

5.2.1.3 Service Description

As described in previous paragraphs, much of the code surrounding the actual

service request is standard and does not change from service to service. Because of

this consistency we built a code generator in Python that takes an XML description

of the service called a service pro�le or service descriptor and generates the CallProxy

and MessagingProxy. Since the consumer and the provider have di�erent needs for

how these two classes are used, the service pro�le accounts for each separately. This
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also allows di�erent consumer and provider types to make use of the same pro�le.

The XML Schema description of the service pro�le is given in Appendix A.

The code generator takes the service pro�le as input and generates the Slice,

source, and make�les necessary to make a service provider or service consumer. The

choice of how the service connection is packaged (as a standalone executable or as a

shared object �le) depends upon how the consumer or provider will access the service

functionality. There are several options and the approach to handling each is slightly

di�erent. We describe four of the most likely packaging forms here in terms of how

the consumer and provider implementations are accessed.

Provider as executable The service connection is created as a standalone exe-

cutable which calls the implementation executable.

Provider as library The service connection is created as an executable linking in

the implementation library.

Consumer, no source The service connection wraps the shared library that would

have been used locally and the CallProxy is the wrapper

Consumer, source The service connection is provided as a separate shared library

linked into the consumer.

The implementation of the SOA approach provides a basic ESB capability along

with a mechanism for creating services, publishing their existence, and discovery by

consumers. To compare the SOA implementation with other common integration

techniques used in robotics, we constructed integrations using the Player framework

[Gerkey et al., 2001] and a basic internet socket approach using point-to-point con-

nections. The next sections describe those implementations as a basis for comparison

against the SOA approach.

5.3 Player

Player [Gerkey et al., 2001] provides device abstractions for the devices and

many algorithms that are most commonly found on robots. Three primary entities
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form the abstractions:

• Interface�a device abstraction through which clients interact with the physical

device or the algorithm;

• Driver�the hardware abstraction interacting directly with the physical device

or the algorithm;

• Device�the binding of a driver to an interface and identi�ed by a device address.

Clients make calls on interfaces. Those interfaces are implemented by devices which

link to drivers. The drivers communicate with the physical device or possibly an

algorithm. The client request and subsequent return handling is facilitated by a

PlayerClient object which wraps the details of the communication with the server.

Interfaces are registered with the Player server which manages client calls and driver

execution. Thus, Player is a client-server technology, but many of the communication

details are hidden from the user and can be delivered as runtime plugins.

A standard set of interfaces for a large set of device types used in robotics

are de�ned and included in the Player distribution. When adding new drivers, the

Player documentation recommends trying to make use of existing interfaces before

creating new ones. Within the interfaces included in Player, the �opaque� interface is

intended for user-de�ned messages. However, this interface just ships raw byte data

between the client and server, requiring signi�cant coding to map the byte data to

structured data. Instead of using the �opaque� interface to do the integration tasks,

we have created a new interface and driver plugin for each of the integration tasks

and used Player's handling of on-the-wire structured data. This approach is closer to

what would be done in a real integration task and so makes for better comparison.

Creating a new interface for use as a plugin in Player requires the following

tasks:

1. Create an interface de�nition using the Player interface de�nition format.

2. Use the code generator supplied by Player to create source code from the inter-

face de�nition.
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3. Create the interface plugin, i.e., the client proxy.

4. Create the driver plugin.

5. Create or modify the client to use the new interface.

6. Create a CMake task to generate and build the new interface and driver plugins

and the modi�ed client.

From our metrics perspective, the interface plugin and the driver plugin belong

to the framework locations since they are associated with and are only accessible

through the Player client proxy or the Player server. Client changes belong to the

base location. The device driver supplied with the physical device or the algorithm

implementation belong to the new location. We do not count the interface de�nition

as executable code: the Player interface de�nition format uses C syntax, but since

the code de�ned in the interface de�nition is copied into the new plugin header �le

through code generation, those lines of code would be double counted if we included

the interface de�nition in counting.

In the next section we describe the implementation approach using the internet

socket point-to-point (P2P) approach.

5.4 P2P

In point-to-point integration, the client establishes a connection directly to a

server without using an indirect addressing scheme. The details of how this connec-

tion is made may di�er from implementation to implementation, but the end result

is that the client and the server are tightly coupled through agreed upon addresses

and port numbers. This coupling means that moving the server to a new address

may invalidate the client's use of that server. Because P2P integration is widely

used, libraries and other toolkits have been created for many of the most commonly

encountered implementation languages to facilitate the development and execution

tasks associated with using remotely invoked functionality. Examples of these li-

braries and toolkits include the ZeroC Ice product [Zeroc, 2010], CORBA [Object
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Management Group, 2008], Microsoft's DCOM [Microsoft Corporation, 2010], Java

RMI [Oracle, 2010], and the Adaptive Communication Environment (ACE) [Douglas

Schmidt, 2010]. Note that these examples are fundamentally object oriented and

some may not be usable when working with a procedural language.

To make a comparison, we used a basic streaming client and server based on

internet sockets as a starting point. This approach is the most basic for connecting

a client and server residing on di�erent machines. The utility of this approach is

that examples abound and are easy to adapt for use. We have taken a representative

example from Hall [2009b] and adapted it for use in the integration tasks. The client

and server are written in C and have been put into the public domain for use without

license restrictions [Hall, 2009a].
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6. COMPARATIVE METRICS APPROACH

We are interested in understanding how various architectures compare when

used for integration, so we de�ne a set of metrics here that can be used in making

the comparison. Di�erent architectures are de�ned with di�erent granularities us-

ing di�erent terms such as functions, objects, components, or services. Comparisons

based on metrics must account for the mismatch between how the metrics are de-

�ned and interpreted for these di�erent granularities. Also, di�erent architectures

employ di�erent strategies for hiding complexity. To capture this complexity hiding,

we want metrics that associate complexity with a location within the architecture.

Finally, since our service-oriented architecture has strong dynamic characteristics,

our metrics must distinguish between static and dynamic complexity. Additionally,

we want a quanti�cation of how well the architecture supports integration. An im-

portant point to note is that in any metrics evaluation of an architecture, we will

not be measuring the actual architecture, which is an abstract concept, but instead

taking measurements on a representation of that architecture. That representation

may be in the form of a set of documents describing the architecture or the rep-

resentation may be in a system implementation based on the architecture. Since

evaluation of documentation is di�cult at best, we have chosen to base our metrics

on a system implementation representing the architecture. This approach assumes

that the system implementation is a faithful representation of that architecture but

using this approach provides a better basis for making quantitative statements about

the architectures under consideration.

6.0.1 PRELIMINARIES

To simplify the discussion, we refer to functions, objects, components, services,

or systems as software elements or just elements. The term base refers to the existing
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software elements, new refers to the new functionality to be integrated, and framework

refers to elements provided for or used to facilitate the integration. The term a�erent

is associated with �ows into an element and the term e�erent refers to �ows out of

an element. We de�ne static and dynamic characteristics here to make clear our use.

Let t represent time. For any software system, execution of the system has both a

start time, t0 and an end time, T . More precisely, the execution time of the entire

system is de�ned as t0 ≤ t ≤ T . The dynamic characteristics of the system are those

that only exist during the execution period and which may not come into existence

until after t0, go out of existence before T , and possibly occur multiple times in a

single execution. Static characteristics are those that exist ∀t.

Our metrics are de�ned on the changes to system elements required to integrate

new functionality within a particular architecture. The change set of an element is

the set of all additions, removals, and modi�cations to that element associated with a

speci�c task. For the collections of change sets created during a particular integration

activity, we use the following notation:

B set of all change sets in the base

bi ∈ B change set for an element in the base

N set of all change sets in the new functionality

ni ∈ N change set for an element in the new functionality

F set of all change sets in the framework

fi ∈ F change set for an element in the framework

We turn now to de�ning our metrics and will use the previous de�nitions as a way of

localizing each of the metrics.

6.0.2 COUPLING METRICS

External coupling between elements was previously identi�ed as contributing

to di�culty in modifying a system through increasing the structural complexity of

the system. We consider, however, that static coupling has a greater impact on the

structural complexity than dynamic coupling. Dynamic coupling allows for modi�ca-

tion of the overall system without necessarily requiring modi�cation to the internal
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structure of the system elements whereas static coupling is created by �xing rela-

tionships between elements within the internal structure. For this reason, we will be

interested in architectures that exhibit nearly constant static coupling with increases

in dynamic coupling following an integration activity. We de�ne such an architec-

ture as �loosely coupled� and, as indicated in previous chapters, loose coupling is a

desirable characteristic of architectures supporting integration1.

Coupling of software elements is an important part of integration since this

is the primary way in which in new functionality is introduced. The coupling may

occur through the use of API calls, use of data structures, class associations (either

is-a or uses associations) or through messages passed between the software elements.

This external structural or relational coupling can be divided into a�erent coupling

and e�erent coupling. We de�ne a�erent coupling as the number of incoming links

to a given software element and e�erent coupling is the number of outbound links.

Note that we do not specify the nature of the link. A link might be through use of a

data structure or through a call to a class method. These are similar to Henry and

Kafura's use of fan-in and fan-out [Henry and Kafura, 1981].

Computing the static coupling metrics de�ned below is straightforward. How-

ever, computing the values for the dynamic coupling requires care since the value will

�uctuate between a minimum (zero at system start) and maximum value (all possi-

ble dynamic connections realized). For a speci�c application of an architecture, the

dynamic coupling will �uctuate about some average value during real operation and

this average would be used. However, since we want to make predictive comparisons,

running real systems or simulations of systems to collect data is of little help. For

our purposes then, we make the convention that the dynamic coupling metrics are

computed based on the expected connections made to use the integrated functionality

during execution of the system. This means that the values of the dynamic coupling

metrics for the pre-integration architecture are zero since the integrated functionality

is not present.

1This de�nition is not meant to suggest that dynamic coupling is a su�cient condition for loose
coupling but that we are treating it as a necessary and measurable aspect of loose coupling
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6.0.2.1 Static A�erent Coupling Change Metrics

We denote the static a�erent coupling metric as sa and parametrize it with

the location, L, where L can take the values B, N , or F . The metric for a single

location is de�ned as

∆sa(L) = sa(L)post − sa(L)pre (6.1)

The quantities on the right hand side (RHS) of the equation are calculated from

sa(L)pre/post ≡
∑

i

sa(`i)pre/post (6.2)

where `i represents the i
th change set in location L. The metric for the total change

in static a�erent coupling in the system is then given by

∆satot = ∆sa(B) + ∆sa(N) + ∆sa(F ) (6.3)

6.0.2.2 Static E�erent Coupling Change Metrics

The static e�erent coupling metric is denoted by se and parametrized with the

location as done for sa. The metric for a single location is de�ned as

∆se(L) = se(L)post − se(L)pre (6.4)

The quantities on the RHS are calculated from

se(L)pre/post ≡
∑

i

se(`i)pre/post (6.5)

where `i represents the i
th change set in location L. The metric for the total change

in static a�erent coupling in the system is then given by

∆setot = ∆se(B) + ∆se(N) + ∆se(F ) (6.6)
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6.0.2.3 Dynamic A�erent Coupling Change Metrics

The dynamic a�erent coupling metric is denoted by da and parametrized with

the location as previously done. The metric for a single location is de�ned as

∆da(L) = da(L)post − da(L)pre

The quantity on the RHS is calculated from

da(L)post ≡
∑

i

da(`i)post (6.7)

where `i represents the i
th change set in location L. The metric for the total change

in static a�erent coupling in the system is then given by

∆datot = ∆da(B) + ∆da(N) + ∆da(F ) (6.8)

6.0.2.4 Dynamic E�erent Coupling Change Metrics

The dynamic e�erent coupling metric is denoted by de and parametrized with

the location as previously done. The metric for a single location is de�ned as

∆de(L) = de(L)post − de(L)pre

The quantities on the RHS are calculated from

de(L)post ≡
∑

i

de(`i)post (6.9)

where `i represents the i
th change set in location L. The metric for the total change

in static a�erent coupling in the system is then given by

∆detot = ∆de(B) + ∆de(N) + ∆de(F ) (6.10)
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6.0.3 INTERNAL COMPLEXITY METRICS

Ideally, we would like to be able to integrate new functionality without having

to make modi�cations to existing code. Some architectures help in getting close to

that ideal while other architectures do nothing and in some cases seem to hinder the

e�ort. When undertaking an integration e�ort, an early understanding of how much

e�ort will be needed to perform the integration can help provide scope and realistic

expectations on the timing and result of the e�ort. Most commercial practices around

software estimation (still) rely on LOC metrics to give rough estimates of task level

of e�ort. The LOC metrics are evaluated against organizational norms for developer

e�ciency and from this evaluation an initial estimate of both e�ort required and

associated economic cost may be made. To compare the integration task level of

e�ort between di�erent architectures we de�ne metrics that capture an implied cost

for change within an architecture due to complexity. The interpretation of such a

metric is that architectures with a high change cost are less desirable than those with

a lower change cost.

We begin by de�ning a line of code which will be the basis for our level of

e�ort estimate. A line of code is any executable statement in the implementation

language of the element under consideration. This de�nition includes data de�ni-

tions, type de�nitions, and lines with implied executability such as the switch/case

statement in C-like languages. The de�nition also includes language constructs such

as imports and includes but excludes lines such as include guards typically found in

C or C++. Additionally, the function signature line for the de�nition of a function

is included since many languages permit function arguments to either have default

values (assignment) or do work such as call out to another function. However, we

only count the function signature line as a single LOC. Finally, source lines continued

across multiple physical lines as viewed in an editor are counted as a single LOC, i.e.,

we will count source line termination symbols, e.g., �;� in C-like languages, as de�ned

in the implementation language. This choice also allows us to count multiple source

lines on a single line as more than a single LOC, e.g., for statements in C or C++.
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6.0.3.1 Change Counts

Modifying source code consists of three possible actions: addition of lines, re-

moval of lines, or modi�cation of a line. The modi�cation action is not detectable

from simple counting of the source code since it neither increases nor decreases the

total LOC. However, we are less interested in the actual count of LOC and more

interested in the count of changed lines; to accurately capture change count, mod-

i�ed lines must be included. Counting modi�ed lines requires access to either the

unchanged and changed integration source for a line-by-line comparison or to version

control logs where all modi�cations are recorded. The change in LOC in an element

due to integration work is denoted by Γtot and is de�ned as

Γtot = ΓA + ΓR + ΓM (6.11)

where ΓA is the total number of lines added, ΓR is the total number of lines removed,

and ΓM is the total number of lines modi�ed. These quantities are de�ned as

ΓA = ΓA(B) + ΓA(N) + ΓA(F ) (6.12)

ΓR = ΓR(B) + ΓR(N) + ΓR(F ) (6.13)

ΓM = ΓM(B) + ΓM(N) + ΓM(F ) (6.14)

where the B, N , and F represent base, new, and framework as previously de�ned.

We can de�ne the change counts in the base, new, and framework locations in the

same way as we did for the coupling metrics. Thus,

Γ(L)tot = ΓA(L) + ΓR(L) + ΓM(L) (6.15)

ΓA(L) =
∑

i

ΓA(`i) (6.16)

ΓR(L) =
∑

i

ΓR(`i) (6.17)
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ΓM(L) =
∑

i

ΓM(`i) (6.18)

With the change count metrics de�ned, we have estimates2 of the e�ort re-

quired to perform the integration. However, because we have included modi�ed lines

and de�ned the change counts without reference to the unchanged and changed over-

all code size, we have lost information about the impact of the code change. We make

the assumption that small changes in a large body of code are likely to have less of

an impact to the overall complexity of the code than the same changes to a small

body of code. To recapture this information, we scale the change count by the ratio

of post-integration LOC to pre-integration LOC. This ratio captures the relative size

change of the body of code and adjusts the total line change accordingly. To simplify

the notation, denote the lines of code count by λ. The scale factor we use is

λ̂ =
λpost

λpre

(6.19)

Accounting for location dependence gives

λ̂(L) =
λ(L)post

λ(L)pre

(6.20)

With these scale factors, we can rewrite the change counts as scaled change counts,

denoted by Γ̄, and obtain

Γ̄tot = λ̂ · Γtot (6.21)

Γ̄A = λ̂ · ΓA (6.22)

Γ̄R = λ̂ · ΓR (6.23)

Γ̄M = λ̂ · ΓM (6.24)

With location dependence included, we obtain

Γ̄(L)tot = λ̂ · Γ(L) (6.25)

2We call this an estimate because this calculation can in practice be done prior to the actual
work of the integration during the planning stages.
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Γ̄A(L) = λ̂(L) · ΓA(L) (6.26)

Γ̄R(L) = λ̂(L) · ΓR(L) (6.27)

Γ̄M(L) = λ̂(L) · ΓM(L) (6.28)

6.0.3.2 Complexity Change Cost Metrics

With change count metrics we have an idea of the e�ort required to perform

an integration and this estimate can be used in comparing architectures for �tness.

However, there is more impact from the code changes than just increasing or decreas-

ing the size of the source code. The additional impact is in the form of changes to

the internal complexity of the elements induced by the code changes. To capture

this change and to provide a means of comparison between architectures, we de�ne

a complexity change cost metric, E, as the e�ort required to change the complexity

by one unit (based on whatever complexity measure is chosen). We will use the Mc-

Cabe Cyclomatic Complexity, vg, as our measure of complexity and so a unit change

in complexity represents the addition of a new independent path in the source code.

This is important because such increases represent additional e�ort in understanding,

testing, and validation. The complexity change is then

∆vg = vgpost − vgpre (6.29)

Accounting for location dependence, we obtain

∆vg(L) = vg(L)post − vg(L)pre (6.30)

with the decomposition of vg(L)post and vg(L)pre by element given by

vg(L)pre/post =
∑

i

vg(`i)pre/post (6.31)

Similar to the change counts, the complexity change provides insu�cient information

to make a determination on the real impact of the complexity change, so we make
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the same assumption as in the change in LOC and scale the complexity change value

in the same way as the scaled change counts. The scale factor is

v̂g =
vgpost

vgpre

(6.32)

and with location dependence becomes

v̂g(L) =
vg(L)post

vg(L)pre

(6.33)

With these scale factors, the complexity change in Equations (6.29) and (6.30) be-

comes

∆v̄g = v̂g ·∆vg (6.34)

∆v̄g(L) = v̂g(L) ·∆vg(L) (6.35)

With the complexity change de�ned in Equations (6.34) and (6.35) and change

counts de�ned by Equations (6.21) and (6.25), we can now de�ne the complexity

change cost metrics, E and E(L) as

E =
Γ̄tot

∆v̄g

(6.36)

E(L) =
Γ̄tot(L)

∆v̄g(L)
(6.37)

The denominators in Equations (6.36) and (6.37) can potentially be zero, so to avoid

the singularity but still obtain a meaningful result we impose the constraints

E = 0 if ∆v̄g = 0 (6.38)

and

E(L) = 0 if ∆v̄g(L) = 0 (6.39)

These constraints state that if no complexity change was measured, then the e�ort

of changing the code is negligible and we assign zero to the metric.
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6.0.4 USING THE METRICS

The metrics de�ned above are built from metrics computed at some lower

level of software element structure. The granularity of this level will depend upon

the fundamental unit of structure within the implementation language and the ar-

chitecture being evaluated. For example, computing the a�erent coupling of objects

can be done at the object level since the object is the fundamental structural unit

within object oriented programming languages. For components, however, the a�er-

ent coupling is computed at the level of the component. This level is chosen because

for software component architectures, the component, while generally consisting of

interacting objects, is considered fundamental and any use of the component should

not depend upon the internal structure of the component. When computing the in-

ternal complexity of software elements, however, we build up the complexity metrics

as the sum of the complexities of the element parts. Since the complexity change

cost is computed based on the e�ort as measured through changed lines of code, the

measurements must be taken at the LOC level. This level choice is consistent with

our identi�cation of these metrics as �internal� complexity metrics. E�ort metrics

other than lines of code and complexity metrics other than vg could be substituted in

the above calculations with the appropriate change of units, but when comparing dif-

ferent architectures it is important to compare the complexity change cost computed

using the same e�ort and complexity metrics for each architecture.

In general, interpretation of the coupling metrics is made by associating a high

degree of coupling with a more complex structure. This is done because elements with

many connections are considered to potentially be doing too much work. For object

oriented systems, this leads to identi�cation of poorly designed systems. However, in

some architectures, a single element may be highly coupled but serves a single pur-

pose. For architectures based on messaging strategies, the message broker element

will exhibit very high dynamic coupling because all messages must �ow through the

broker. In these cases, we consider the message broker to be a single purpose element

with low complexity despite the high coupling. Thus, when interpreting the coupling
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metrics de�ned above, care must be taken to ensure that the role of the element is

considered as a part of the interpretation. Part of our use of the location parametriza-

tion is to account for this role e�ect. We believe that complexity in the framework

elements is preferable to complexity in the base or new code locations. However, that

preference is based on the notion that framework elements should hide complexity

from users of the framework and the degree to which that hiding is done a�ects the

perceived complexity of the framework.

The complexity change cost metrics are interpreted by assigning lower values

of the metric with an architecture that is more acceptable or �t. This interpretation

is made based on the idea that integration inherently increases the complexity of

the system through the addition of new capabilities. Because of this unavoidable

complexity increase, integration done within architectures that require more e�ort to

change the complexity, as measured by the LOC change count, is more di�cult and

more costly in terms of people, time, and money.

The metrics as de�ned would appear to require a fully developed system to

make measurements against. In fact, better results are obtained from measurement of

the source after the integration is complete. However, the metrics have the potentail

to be used predictively, but with reduced accuracy. The base, framework, and new

source will already exist since otherwise we would not be considering this an integra-

tion. Examination of the existing source is a precursor to any integration e�ort and

organizations adept at integration will create an integration strategy and integration

plan based on that examination. Our metrics can be computed by �rst creating an

integration plan for each capability to be integrated and for each architecture to be

considered and use the results of those plans to make the necessary measurements.

This use will be an estimate only but should provide su�cient insight into how dif-

ferent architectures compare when doing the same integration tasks without having

to actually perform the integration.

Coupling was de�ned in the context of object oriented systems. Since some of

the code we may need to analyze will not be object oriented, we need some guidelines

for determining coupling in those implementations. For example, since C is not object-
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oriented, the software tools available for measuring coupling do not analyze C code

[Chidamber and Kemerer, 1994]. To extract coupling measures for the C portions

of the integrations, we consider the use of include �les (.h) other than stdio.h and

stdlib.h as an indication of static coupling. Include �les distributed with applications

written in C typically encapsulate datatype de�nitions and operations on those types

in such a way that the individual �les can be considered as a form of data type

partitions. We used this partitioning to provide a rough measure of coupling for all

applications written in C by counting the number of include �les referenced in the

application.

Measuring dynamic coupling is di�cult in general. Pro�ling tools give an indi-

cation of dynamic coupling but are only applicable to code compiled or instrumented

with pro�ling enabled for the speci�c pro�ling tool. To get a more accurate count

of dynamic coupling, we scanned the source code for occurrences of linkages between

types or classes that could not exist except during execution of the application. These

linkages included

• Dynamic library loads,

• Dynamic method invocation (in the case of Ice),

• accept, bind, connect, send, recv, read, or write operations on sockets, and

• Any usage of runtime type information (RTTI).

• Linkages that could be modi�ed through con�guration information changes

without requiring recompilation

For each occurrence of these constructs, the dynamic coupling count is incremented

by one.

In Parts III, IV, and V we use our metrics to evaluate how well the service

oriented approach to integration compares to the approaches based on Player and

P2P. For all of the integration tasks performed, the integration was performed in

stages by creating an operational baseline that was then used to measure how much
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change occurred when the new capabilities were integrated in small increments. The

operational baseline is termed �baseline� and measurements taken on the baseline

establish how much e�ort was required to get a functional capability to support further

integration. The remaining stages are termed ��rst� and �second.� These represent

the addition of a single new piece of functionality to the operational baseline at each

stage. Measurements are made at each stage and reported by stage.
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7. WORLD DATABASE INTEGRATION

In this chapter we provide a discussion of the implementation details for inte-

grating the World Database. In addition, we provide the detailed measured counts

of code lines, McCabe complexity, and computed values of the various metrics used

in comparing architectural approaches to integration. The data values are grouped

by the integration phase in which they were collected and further grouped and sum-

marized by the location of the software element from which the value was obtained.

Locations are either Framework (F), Base (B), or New (N).

7.1 SOA Integration

For the SOA approach to the WDB task, the following classes and applications

were created in addition to those components provided by the ZeroC IceTM and ZeroC

IceStormTM products:

• ATRV_WDB_Impl�Implementation class of the de�ned interface. Provides

the connection to the Ice runtime components through inheritance of generated

classes containing Ice-speci�c implementations. For the purposes of integration,

this class was implemented as two separate classes, ATRV_WDB_Impl_C and

ATRV_WDB_Impl_S, for use in client and server applications, respectively.

• ServiceUtilities�Collection of utilities wrapping calls to the communications

adapter interface. Provides a decoupling of the message exchange patterns from

the communications transports. Also contains utilities for manipulating XML

�les.

• MURI_DataRep�Class containing the API used by the client application.

Uses the ServiceUtilities class to perform messaging but manages the appear-

ance of the message �ow for the client. For the WDB task, the client expects
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synchronous method invocations, so the MURI_DataRep class provides block-

ing calls on the API methods but uses asynchronous messaging through the

interface de�nition and ZeroC IceStormTM .

• IceStormAdapter�Implementation class of the SOA_Base interface. SOA_Base

de�nes generic functionality associated with typical communication protocols.

IceStormAdapter implements that interface using the ZeroC IceStormTM mes-

saging product.

• DataServiceMain�Server application built on top of ServiceUtilities and Ice-

StormAdapter to receive published requests for service from the client API calls

for database access. Translates those request messages into the correct database

access executable. Also responsible for delivering results XML �les as a reply

message to the client request.

• CPPTestClient�Simple client used to test the functionality provided by the

other components and demonstrate usage.

All measurements were made on these classes and are reported at the class level.

Additionally, no measurements were made on code generated by Ice or on any library

code provided by Ice. The next section presents the computed metrics by the code

location, i.e., either Framework, New, or Base. The detailed measurement data can

be found in Appendix C.

7.2 Player Integration

The code created during the Player integration of the World Database is di-

vided into three components. The WDB functionality is delivered through calls into

the driver component. Those calls are delivered from the client indirectly through

the interface client proxy. In all cases, the calls are mediated by the Player server

provided by the Player framework. The three components are as follows:

• wdb_client�C language implementation of a simple client for testing the mes-

saging interfaces,
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• wdbinterf_client�C language implementation of the interface de�ned for the

WDB tasks, and

• wdbinterf_driver�C++ language implementation of the driver providing ac-

cess to the WDB query and update executables.

Detailed measurement data and computation of the metrics can be found in Appendix

D

7.3 P2P Integration

The P2P approach is the simplest in terms of code division, consisting of a

server application and a client application. The code is contained in two C language

�les as follows:

• wdb-client�Client code for connecting through internet sockets to the server

on a well-known port and for streaming the request data across the socket to

the server, and

• wdb-server�Server code for listening for socket connections, receiving data from

clients, executing theWDB query and update executables, and streaming results

across the socket to the client.

Detailed measurement data and computation of the metrics can be found in Appendix

E

7.4 Metrics Results

In this section, we present the results of the measurements and metrics com-

putations for the di�erent integration approaches used in the WDB integration task.

The �rst three graphs depict the results of the coupling measurements. The results

are grouped by the type of the coupling and the values by location are shown. The

remaining three graphs depict the results of measuring code size change, complexity
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Figure 7.1: Coupling measurements from the SOA approach to the WDB integration
task. Detailed data for this graph can be found in Appendix C, Tables C.4, C.10,
and C.16.

Figure 7.2: Coupling measurements from the Player approach to the WDB integration
task. Detailed data for this graph can be found in Appendix D, Tables D.4, D.10,
and D.16.

change, and complexity change cost for the di�erent integration methods. The results

are grouped by integration approach and the values by location are shown.

The measured coupling data for the di�erent integration approaches is shown

in Figures 7.1, 7.2, and 7.3.

The scaled code size metric data for the di�erent integration approaches is

shown in Figure 7.4. The data are clustered by integration approach. Within each

cluster, the values are separated by location.

The scaled complexity metric data for the di�erent integration approach is

shown in Figure 7.5. The data are clustered by integration approach. Within each

cluster, the values are separated by location.
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Figure 7.3: Coupling measurements from the P2P approach to the WDB integration
task. Detailed data for this graph can be found in Appendix E, Tables E.4, E.10, and
E.16.

Figure 7.4: Scaled code size measurements from the various integration approaches to
the WDB integration task. Detailed data for this graph can be found in Appendix C,
Tables C.5, C.11, and C.17, Appendix D, Tables D.5, D.11, and D.17, and Appendix
E, Tables E.5, E.11, and E.17.

Figure 7.5: Scaled complexity metrics from the various integration approaches to the
WDB integration task. Detailed data for this graph can be found in Appendix C,
Tables C.6, C.12, and C.18, Appendix D, Tables D.6, D.12, and D.18, and Appendix
E, Tables E.6, E.12, and E.18.
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Figure 7.6: Complexity Change Cost metric values from the various integration ap-
proaches to the WDB integration task. Detailed data for this graph can be found in
Appendix C, Tables C.6, C.12, and C.18, Appendix D, Tables D.6, D.12, and D.18,
and Appendix E, Tables E.6, E.12, and E.18.

The Complexity Change Metric metric for the di�erent integration approaches

is shown in Figure 7.6. The data are clustered by integration approach. Within each

cluster, the values are separated by location.
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8. COMPARATIVE RESULTS

In the previous chapter we presented the details of the measurements and

metrics derived from the staged integrations performed for the World Database in-

tegration tasks. In this chapter we will summarize those results and provide an

interpretation of the summary values.

8.1 Coupling Metrics

In this section we consider the coupling between components and how integra-

tion is a�ected by that coupling and how the coupling is changed during integration.

The summary metrics for the coupling changes are shown in Figure 8.1. In the �gure,

the numbers correspond to the SOA, Player, P2P, and Player as ESB integration

approaches, respectively. In the SOA approach for WDB integration, the coupling

does not change. Several factors contribute to this lack of change including

• The use of generic Request and Reply operations,

• The use of the Context object to transport the database operation names,

• The arguments to both operations are strings representing the contents of the

XML request and result �les, and

• Client code accesses the services by calling execute(op-name).

Thus, addition of a new database operation does not change anything except the

values of the strings used in the service request.

For the Player integration in the WDB integration, the change in e�erent

coupling is constant for both static and dynamic coupling. The lack of variability

in the e�erent coupling can be understood by considering that addition of a new



94

Figure 8.1: Summary of coupling changes for the various integration approaches to
the WDB task

message type to Player results in changes to the message handling code for the new

message resulting in the +1 increase in static e�erent coupling. Additionally, the new

message contributes a new interface implementation in the client proxy and the driver

code, both of which are accessed at runtime, resulting in the +2 increase in dynamic

e�erent coupling.

In the P2P approach to the WDB integration, each new message adds an

accept, send, and recv operation for handling the request and response. Since our

guidelines count these as dynamic linkages, we obtain the constant +3 increase in

dynamic e�erent coupling at each integration step.

8.2 Complexity Change Cost

In this section we present the summary metrics related to complexity changes

due to integration. The summary values for LOC changes, McCabe complexity

changes, and the resulting complexity change cost are shown in Figures 8.2, 8.3,

and 8.4. In the SOA approach for the WDB integration, we encounter a high com-

plexity change cost in the initial creation of the baseline capability. However, the

large up-front cost pays o� in subsequent integrations where the complexity change
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Figure 8.2: Code volume changes across the baseline, �rst, and second integration
stages for the WDB task

Figure 8.3: Complexity changes across the baseline, �rst, and second integration
stages for the WDB task
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Figure 8.4: Complexity change cost across the baseline, �rst, and second integration
stages for the WDB task

cost is zero. Adding a new capability using the ESB framework consists of the addi-

tion of two lines in the client (one to call the service, the other to read the results)

and a single line in the service provider code to dispatch the request. These changes

are sequential lines of code and thus do not increase the complexity of the source,

resulting in a zero complexity change cost after the initial e�ort.

For the Player approach to the WDB integration, the baseline codebase is

relatively small but with high complexity. With successive integrations, the source

code grows by 30 to 40 lines with a scaled complexity of around 6. The nearly

constant change in complexity is due to the need to perform checks on messages at

various points to understand what message has been received and what should be

done with that message. These checks are the same for each message except for the

de�ned constant associated with a particular message. This consistency is what gives

a constant growth with each message addition. However, since the complexity change

cost is the ratio of scaled LOC changes to scaled complexity, the complexity change

cost will continue to grow as more capabilities are added because of the way in which

those capabilities must be added.

In the case of P2P for WDB integration, the size of the source code and com-
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plexity grow signi�cantly with each integration. Since the socket operations used to

transmit and receive messages are very low-level constructs, signi�cant error checking

and handling code is required to handle both incoming and outgoing data. Addition-

ally, once a second message has been added to the P2P interactions, decisions about

protocols for embedding function returns and parameter values and types must be

made. These decisions require additional code to handle message transformations

to and from the di�erent protocols, thus increasing the size and complexity of the

source code. In short, P2P integration requires creation of capabilities that exist in

frameworks such as Player or an ESB.
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9. PRAGMATICS INTEGRATION WITH SOA

In this chapter we provide details of the service implementation for the MURI

Pragmatics integration tasks. In addition, the detailed measured counts of code lines,

McCabe complexity, and computed values of the various metrics are given. The data

values are grouped by the integration phase in which they were collected and further

grouped and summarized by the location of the software element from which the value

was obtained. Locations are either Framework (F), Base (B), or New (N).

9.1 SOA Integration

For the Pragmatics integration task using the SOA approach, the solution con-

sists of three distinct components: the GUI, Pragmatics, and the Backend component.

The interface de�nition used in the three components consists of three request op-

erations and one reply operation. The three request operations di�er only in the

argument list taken by each and support the three di�erent argument lists used in

the overall Pragmatics system. The reply operation is not used but is included to

allow for the addition of request-response type messaging. The following classes and

applications were created to implement these components:

• Backend_Messages�Class presenting the backend message API. This class al-

lows application code in the Backend to send status update messages to the

GUI through the Pragmatics component,

• Backend_PragImpl�Backend implementation class of the interface,

• Prag_Messages�Class presenting the Pragmatics component API. This class

allows application code in the Pragmatics component to remap messages and

transfer data sent from the other components,
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• Prag_PragmaticsImpl�Pragmatics component implementation class of the in-

terface,

• GUI_Messages�Class presenting the GUI component API. This class allows

application code in the GUI to send commands to the Backend,

• GUI_PragmaticsImpl�GUI component implementation class of the interface,

• ServiceUtilities�Collection of utilities for handling initialization of the commu-

nications channels and setup and sending of the IceStorm messages between the

components. This class is similar to the ServiceUtilities class in the WDB in-

tegration but was refactored and amended to accommodate the di�ering needs

of the Pragmatics integration. Future versions of this class should not require

amendment to be used across integration tasks with di�ering requirements,

• IceStormAdapter�Communications transport adapter class implementing the

SOA_Base interface. This adapter class is the same as that used in the WDB

integration,

• gui�C++ language application to initiate messaging between the GUI and the

Pragmatics component,

• prag�C++ language application to handle calls from the GUI, deliver com-

mands to the Backend, and transfer status updates from the Backend to the

GUI, and

• backend�C++ language application to execute the backend functionality based

on messages received from the Pragmatics component.

As in the WDB task previously described, we do not analyze libraries provided by the

Ice or IceStorm product nor do we analyze code generated by the Ice IDL compiler.

The detailed measurement data can be found in Appendix F.
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9.2 Player Integration

Similar to the SOA approach, three distinct components are identi�ed as the

GUI, Pragmatics, and the Backend. For a Player integration, we must create a client

proxy and a driver for each of the components. Additionally, client functionality to

access the functionality was created. In the case of the Pragmatics component, this

functionality was a hard-wired mapping of GUI commands to Backend commands due

to the lack of an actual Pragmatics capability at the time of the integration e�ort.

This lack of functionality does not create di�culties with the integration since the

code in place is easily replaceable with the Pragmatics functionality as described to

us by the creators of that functionality. Based on this, we created nine separate code

packages as follows:

• muribackendinterf_client�Client proxy C code for the Backend component

messages,

• muribackendinterf_driver�Driver C++ code for the Backend device,

• muripraginterf_client�Client proxy C code for the Pragmatics component mes-

sages,

• muripraginterf_driver�Driver C++ code for the Pragmatics device,

• muriguiinterf_client�Client proxy C code for the GUI component messages,

• muriguiinterf_driver�Driver C++ code for the GUI device,

• muri_backend�C code application used to access the Backend component func-

tionality, a wrapper around commands received from the Pragmatics compo-

nent,

• muri_pragmatics�C code application used to create the link between the GUI

component and the Backend component. Primarily responsible for mapping

GUI command into equivalent Backend commands and vice versa, and
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• muri_gui�C code application used to provide commands from the GUI to the

Backend component through the Pragmatics component.

Detailed measurement data can be found in Appendix G.

9.3 P2P Integration

As in the SOA and Player implementations, the GUI, Pragmatics, and Backend

components formed the basic high level structure of the implementation. Because of

the nature of the P2P approach, we provided the implementation of each component

in a single �le, i.e., one per component. This means that since each component

functioned as both client and server, the code for each role is contained in the same

�le. The code for each component is thus divided into the following three �les:

• muri-backend�Client and server code for the backend functionality,

• muri-prag� Client and server code for the pragmatics functionality, and

• gui-prag�Client and server code for the GUI functionality.

The detailed measurement data can be found in Appendix H.

9.4 Metrics Results

In this section, we present the results of the measurements and metrics com-

putations for the di�erent integration approaches used in the WDB integration task.

The �rst three graphs depict the results of the coupling measurements. The results

are grouped by the type of the coupling and the values by location are shown. The

remaining three graphs depict the results of measuring code size change, complexity

change, and complexity change cost for the di�erent integration methods. The results

are grouped by integration approach and the values by location are shown.

The measured coupling data for the di�erent integration approaches is shown

in Figures 9.1, 9.2, and 9.3.
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Figure 9.1: Coupling measurements from the SOA approach to the Pragmatics inte-
gration task. Detailed data for the graph can be found in Appendix F, Tables F.4,
F.10, and F.16.

Figure 9.2: Coupling measurements from the Player approach to the Pragmatics
integration task. Detailed data for the graph can be found in Appendix G, Tables
G.4, G.10, and G.16.

Figure 9.3: Coupling measurements from the P2P approach to the Pragmatics inte-
gration task. Detailed data for the graph can be found in Appendix H, Tables H.4,
H.10, and H.16.
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Figure 9.4: Scaled code size measurements from the various integration approaches
to the Pragmatics integration task. Detailed data for the graph can be found in
Appendix F, Tables F.5, F.11, and F.17, Appendix G, Tables G.5, G.11, and G.17,
and Appendix H, Tables H.5, H.11, and H.17.

Figure 9.5: Scaled complexity metrics from the various integration approaches to the
Pragmatics integration task. Detailed data for the graph can be found in Appendix F,
Tables F.6, F.12, and F.18, Appendix G, Tables G.6, G.12, and G.18, and Appendix
H, Tables H.6, H.12, and H.18.

The scaled code size metric data for the di�erent integration approaches is

shown in Figure 9.4. The data are clustered by integration approach and the values

are broken out by location.

The scaled complexity metric data for the di�erent integration approach is

shown in Figure 9.5. The data are clustered by integration approach and the values

are broken out by location.

The Complexity Change Metric metric for the di�erent integration approaches

is shown in Figure 9.6.
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Figure 9.6: Complexity Change Cost metric values from the various integration ap-
proaches to the Pragmatics integration task. Detailed data for the graph can be found
in Appendix F, Tables F.6, F.12, and F.18, Appendix G, Tables G.6, G.12, and G.18,
and Appendix H, Tables H.6, H.12, and H.18.
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10. COMPARATIVE RESULTS

In the previous chapter we presented the details of the measurements and

metrics derived from the staged integrations performed for the SUBTLE integration

tasks. In this chapter we will summarize those results and provide an interpretation

of those summary values.

10.1 Coupling Metrics

In this section we consider the coupling between components and how integra-

tion is a�ected by that coupling and how the coupling is changed during integration.

The summary coupling metrics are shown in Figure 10.1.

For the SOA approach, the dynamic e�erent coupling is relatively large for

both integration phases. This large value is due to the way the commands and status

updates are dynamically created in the messaging component, and the e�ect that

the dynamic creation has on how the interface implementations must deal with the

results. The large value is also due to small contributions of a messaging component

and interface implementation for each of the GUI, Pragmatics, and the Backend.

In the Player approach, the initial coupling change from the baseline increases

due to the addition of a new message in each of the GUI, Pragmatics, and Backend.

Otherwise, the coupling is unchanged since the addition of new messages does not

induce any additional coupling above that previously described in Chapter 8

Finally, using the P2P approach we see an increase in dynamic e�erent cou-

pling due to the addition of accept, recv, and send operations for each of the GUI,

Pragmatics, and Backend components similar to that observed in the World Database

task described in Chapter 8.
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Figure 10.1: Summary of coupling changes for the various integration approaches to
the Pragmatics task

10.2 Complexity Change Cost

In this section we present the summary metrics related to complexity changes

due to integration. The summary values for LOC changes, McCabe complexity

changes, and the resulting complexity change cost are shown in Figures 10.2, 10.3,

and 10.4. Using SOA, we observe that signi�cant complexity is involved in the

integration. This complexity is due largely to the need for mapping messages from

the GUI to messages for the Backend within the Pragmatics component and simi-

larly for the updates coming from the Backend to the GUI. However, the complexity

change cost remains relatively constant over the di�erent integration stages due to

the reuse of the same message mapping code for all subsequent message additions.

This result is important since an ESB infrastructure component that is responsible

for remapping messages based on content will have nearly identical characteristics to

the Pragmatics component. The reuse of such an infrastructure component allows for

the upfront expense in handling the complexity with subsequent reduced expense and

increased value from hiding the complexity and using a component that has already

been tested and does not change.

In the Player approach, we observe a large jump in complexity change cost due
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Figure 10.2: Code volume changes across the baseline, �rst, and second integration
stages for the Pragmatics task

Figure 10.3: Complexity changes across the baseline, �rst, and second integration
stages for the Pragmatics task
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Figure 10.4: Complexity change cost across the baseline, �rst, and second integration
stages for the Pragmatics task

to the introduction of the messages into the system at the �rst integration phase. In

the subsequent integration, however,the values drop sharply and remain lower. As in

the WDB integration task, this is due largely to the similarity of the message handling

code for all subsequent messages added to the system.

For the P2P approach, the complexity change cost is high and re�ects the

fact that addition of multiple messages and using components that function as both

client and server increases the di�culty of working with the source code. Complexity

change cost for the P2P integration also increases signi�cantly after the addition of

the second message for the same reasons discussed in Chapter 8. This is because P2P

approaches require creation of capabilities that exist in both the SOA and Player

approaches.
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11. PLAYER MODULE INTEGRATION APPROACH

As a �nal application of the SOA approach, we take an existing Player driver

and integrate that driver into the SOA architecture. The goal is to make the func-

tionality contained in an existing Player driver library accessible without the use of

the Player server. Additionally, integration in this way means that the consumer

application is not aware that the functionality is implemented in a Player library and

does not require use of the Player libraries or con�guration �les.

11.1 Requirements Derived From Player

Many of the drivers provided with the Player distribution support multiple

interfaces. Thus, making the driver accessible means that a client application can

make calls on the supported interfaces and expect the driver to provide the function-

ality. Additionally, since multiple drivers may support the same interface, the client

must specify the speci�c driver against which the interface call should be made. To

illustrate the application of the SOA approach to integrating existing functionality,

we focus on a particular interface of one driver and build up the integration in stages

as was done in the previous integrations.

We selected the position2d interface as the Player interface integration target.

This interface is supported by many of the drivers supplied in the Player distribution

but no driver supports all of the interface methods de�ned for position2d. The par-

ticular driver we chose was the RFLEX driver. This driver supports the following

interfaces and methods:

• position2d

� PLAYER_POSITION2D_REQ_SET_ODOM
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� PLAYER_POSITION2D_REQ_RESET_ODOM

� PLAYER_POSITION2D_REQ_MOTOR_POWER

� PLAYER_POSITION2D_REQ_VELOCITY_MODE

� PLAYER_POSITION2D_REQ_GET_GEOM

• sonar

� PLAYER_SONAR_REQ_POWER

� PLAYER_SONAR_REQ_GET_GEOM

• ir

� PLAYER_IR_REQ_POWER

� PLAYER_IR_REQ_POSE

• Bumper

� PLAYER_BUMPER_REQ_GET_GEOM

The SET_ODOM and RESET_ODOM methods are the two methods supported in

the �rst and second integration stages, respectively.

To integrate with an existing Player driver, without modi�cation to the driver,

requires that the service provider functionality that exposes the driver capabilities use

the mechanisms that a Player server uses with drivers. This requirement means that

we must initialize a driver using the Player con�guration mechanisms, pass messages

to the driver, and ensure that those messages are formatted according to the Player

message format. These requirements are satis�ed by linking in the Player shared

libraries and calling the driver methods directly. Player drivers must implement a

de�ned interface that allows the Player server to manage all drivers in the same way.

The service provider wrapper makes use of that interface to ensure that the driver is

initialized correctly and to handle messages.

Messages are passed from the Player server to the driver by placing inbound

messages into a queue which is processed within the driver's implementation of Pro-

cessMessages. The ProcessMessages method is one of the standard interface methods
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that all Player drivers must implement. Within a driver, ProcessMessages is called

from within an event loop initiated when the driver's Main method is called. Within

ProcessMessages, messages in the queue are checked for the type and subtype of the

message to determine if the message is handled by the driver. If not, the message

is ignored or discarded. Otherwise, the message handler performs the functional-

ity speci�ed by the message type and subtype which identify the interface method

being invoked. The implementation of the interface method is provided within the

ProcessMessages body or may be invoked via a local, private method. Finally, all

driver interface methods pass a single struct containing the parameters required by

the method. The structs are de�ned in a driver de�nition �le with several di�erent

structs de�ned for di�erent methods.

11.2 Implementation Approach

As a result of the previous requirements, our integration approach was to create

an API for consumer applications consisting of the methods SetOdometry(double x,

double y, double yaw) and ResetOdometry(). These API calls mapped into IceStorm

messages, Provider_SetOdometry_Request and Provider_ResetOdometry_Request

for transmission on the ESB. On the provider side, the provider application subscribed

to the IceStorm messages and upon receipt of one of the two messages, converted that

message into the equivalent Player messages. The provider creates a message header

according to the Player message header format, attaches the message payload, and

inserts the message onto the driver's inbound message queue. During event loop pro-

cessing in the driver, the message is removed from the inbound queue and processed

within the ProcessMessages method.

To hide the Player-speci�c struct detail from service users, we de�ned the

consumer side API with the individual parameters contained in the structs instead of

struct equivalents. Then, to facilitate the producer side mapping into Player messages,

we made Slice class de�nitions corresponding to the Player structs used by position2d

and used the generated forms �lled with the parameter data supplied by the API
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call as message payloads to the provider. When the provider receives a message, the

payload is transferred into the correct Player struct and incorporated into the Player

message put on the inbound queue.

The consumer and provider were SOA-enabled by using the existing IceStorm

protocol adapter developed for the World Database integration tasks and the Ser-

viceUtilities component developed for the Pragmatics integration task. Additionally,

the components mediating the translation between the di�erent data representations,

while created manually for this integration task, can be generated from the service

descriptor �le by including data type mapping sections.

In the next chapter we present the results of the measurements made on the

software during each stage of the integration.
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12. PLAYER MODULE INTEGRATION RESULTS

This chapter provides additional details of the SOA approach to integrating

a legacy Player driver module. Additionally, we present the measurement results

of LOC, McCabe complexity, and complexity change cost for the SOA approach.

The data values are grouped by the integration phase in which they were collected

and summarized by the location of the software element from which the value was

obtained.

This integration task is di�erent from the WDB and Pragmatics integration

since we already have the Player integration and the complexity change cost for

Player is zero. Additionally, for this task we were only interested in understanding

how much e�ort is required to apply the SOA approach when no e�ort was required

to use Player. Thus, we did not use the point-to-point approach and did not make

coupling measurements.

Based on the description of the approach given in the Chapter 11, we created

the following classes and applications:

1. consumer.cpp�standalone consumer test application

2. provider.cpp�standalone provider test wrapper application

3. player-p2d-mediator�base class for message translation between consumer API,

ESB, and Player formats

4. player-p2d-mediator-consumer�class derived from player-position2d-mediator

for message mediation between consumer API and ESB formats

5. player-p2d-mediator-provider�class derived from player-position2d-mediator for

message mediation between ESB and Player formats
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Figure 12.1: Code volume changes by location across the baseline, �rst, and second
integration stages for the Player module task. Detailed data for the graph can be
found in Appendix I, Tables I.3, I.7, and I.11.

6. player-p2d-consumer�consumer side implementation class for the Slice inter-

face de�nitions

7. player-p2d-provider�provider side implementation class for the Slice interface

de�nitions

All measurements and metric calculations were made on these classes and applica-

tions.

12.1 Results Discussion

In this section we present the measurements and metrics obtained from the

code resulting from the integration of the Player module. The results for code size

change, code complexity change, and the complexity change cost categorized by lo-

cation are given in Figures 12.1, 12.2, and 12.3. The summary results are shown in

Figures 12.4, 12.5, and 12.6. In the next set of �gures, the location data is summa-

rized and contrasted against the Player values (all of which are zero for the purposes

of this integration). In this integration task, all complexity change cost and e�ort

for Player are zero. In the SOA approach, however, we observe a similar pattern as in

previous integrations: the initial complexity change cost is large but decreases or sta-

bilizes at a near constant value with subsequent integrations. The large complexities
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Figure 12.2: Code complexity changes by location across the baseline, �rst, and
second integration stages for the Player module task. Detailed data for the graph can
be found in Appendix I, Tables I.4, I.7, and I.11.

Figure 12.3: Complexity change cost by location across the baseline, �rst, and second
integration stages for the Player module task. Detailed data for the graph can be
found in Appendix I, Tables I.4, I.7, and I.11.

Figure 12.4: Code volume change across the baseline, �rst, and second integration
stages for the Player module task. Detailed data for the graph was derived from the
tables in Appendix I.
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Figure 12.5: Code complexity change across the baseline, �rst, and second integration
stages for the Player module task. Detailed data for the graph was derived from the
tables in Appendix I.

Figure 12.6: Complexity change cost across the baseline, �rst, and second integration
stages for the Player module task. Detailed data for the graph was derived from the
tables in Appendix I.
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and code change values observed at each stage are due to the necessity of transform-

ing parameter data at multiple locations in the service chain into a form usable by

the integrated Player driver. These large values could potentially be reduced through

the use of a mediation service with knowledge of speci�c data mappings or a data

representation such as XML that permits transformations through declarative means

such as the use of XML Schema Language Transformation (XSLT). These constructs

represent more generalized mediation of data transformation and their use avoids the

need to explicitly code data transformations in the provider or consumer call stack.
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13. ANALYSIS AND INTERPRETATION

In the previous chapters we presented and summarized the details of the mea-

surements and metrics derived from the staged integrations performed for both the

World Database and the SUBTLE integration tasks. In this chapter we will provide

an analysis and interpretation of those summary values by examining how coupling

in�uences integration tasks and how well the complexity change cost metric captures

the e�ort to perform integration tasks.

13.1 Integration Approaches

Using a service-oriented approach to integration forces a change in the way we

provide access to capabilities. When applied to a robotic platform, the SOA approach

provides �exibility and more ease of use in consumer access to and provider delivery

of service capabilities. However, this �exibility comes at a cost to the provider of

framework components supporting service orientation. That cost is increased up-

front complexity but with a rapid decline in future increases of complexity through

further integration. Additionally, ESB framework components are not �throw away�

components but can be reused by many di�erent consumers, providers, or systems.

This reuse allows for amortization of the initial cost of creation of the components

across a larger user set thus reducing the individual costs for integration.

Consideration of the metric data also supports the notion that while the ESB

model is extremely useful in supporting service-orientation, the particular implemen-

tation of an ESB is not as important as the infrastructure capabilities provided by

the ESB implementation. The implementation of an ESB approach using Player as

the underlying technology shows similar complexity costs as using a commercial mes-

saging system. However, these similarities must be tempered with the understanding



122

that the ESB implemented on Player is limited by a lack of available infrastruc-

ture services and for which additional complexity costs are incurred to implement

and provide. Use of the Ice and IceStorm products provide many of the necessary

infrastructure services out of the box.

While the P2P approach to integration is still in use, the metric results for the

impact of using such an approach suggest that adoption of higher level abstractions

such as those provided by service orientation and Player, can increase the ability of

roboticists to more quickly add, remove, or modify capabilities as mission or research

conditions require. If we consider the approaches to integration in a hierarchy of ab-

straction, SOA-based approaches are at a very high level of abstraction. Frameworks,

such as Player, ROS, 4D/RCS, and others mentioned in this thesis, provide elements

at a level of abstraction below service orientation, while the P2P approaches are at the

lowest levels of abstraction. In fact, frameworks like ROS and 4D/RCS incorporate

elements of service-orientation through the use of software component architectures,

of which service-orientation is an example.

13.2 Coupling

In the integrations using both the SOA and Player approaches, we observe in

the metric data that the changes in coupling are accompanied by larger complexity

values, particularly where the coupling is dynamic. This tracking of complexity with

coupling is evident in the WDB integration task for the Player approach and in the

Pragmatics integration task for the SOA approach. However, in both the SOA and

Player approaches, the dynamic coupling and changes to that coupling are con�ned to

components classi�ed as framework components. Relocating the complexity to stable

framework components that are not required to be changed hides that complexity

to users of the SOA and Player approaches. The advantage of the SOA approach

over the Player approach is through the ESB concept in which we have abstracted

how requests are made, transmitted, and handled. This abstraction is re�ected in

the simple interface available to service consumers and service providers. In the
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WDB case, the client interface consists of a single method, execute, the details of

which are hidden from the consumer. Additionally, this abstraction adds �exibility

to how consumer requests are handled. Through the dynamic coupling mechanisms,

protocol adapters such as the IceStormAdapter can be swapped out or augmented

with other protocols and the change is invisible to the service consumer and service

provider. Similarly, the components managing the message exchange patterns such

as the ServiceUtilities or MURI_DataRep components in the WDB integration task

allow for dynamic changes to the available messaging patterns or even a move towards

streaming data patterns. Again, such changes are not exposed to the service consumer

or provider. Player provides limited capabilities in this area but the availability of a

rich set of device de�nitions can be used in conjunction with an ESB framework to

provide access to those devices in a �exible way.

13.3 Complexity Change Cost

Our de�nition of complexity change cost provides insight into the level of

e�ort required to use a particular integration approach. In the case of the SOA

approach, the complexity change cost values re�ect that SOA enables integration

changes with relatively low e�ort on the part of the consumer or provider. However,

those same metrics indicate that the cost of using SOA is in the build out of the

ESB or service architecture capabilities. So the cost has not been eliminated but

relocated into a centralized collection of capabilities. This shifting of the complexity

cost into framework e�ort is justi�ed if such a framework allows for future reuse of

components and thus distribution of the creation costs. Such reuse might include

use of existing capabilities on new platforms, use of new capabilities on existing

platforms, rapid exchange of capabilities on existing platforms, or discovery of existing

capabilities on existing platforms. Additionally, creation of an initial ESB or use

of an existing technology to provide an ESB, such as was done here with ZeroC

IceStormTM or Player, provides an architectural advantage to integration by supplying

a centralized capability to perform system wide activities such as health monitoring,
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performance monitoring, compliance checking and monitoring, security, logging, and

fault handling. All of these capabilities are important in the deployed use of robotic

platforms and if not addressed in a �exible way, may limit the utility of the platform.

Use of the complexity change cost metric provides an estimate of the e�ort required

to add these capabilities based on the forecast complexity of the added capability.

The comparison of the di�erent integration approaches using the complexity

change cost also provides a means of performing future comparisons between archi-

tectural approaches. Use of estimated LOC changes and complexity changes can be

used to derive complexity change costs for candidate architectures and for making a

selection from those candidates. We have used the McCabe complexity metric as the

basis for our calculations but other code complexity metrics exist and are useful in

computing the complexity change cost. Similarly, we used LOC as an estimate of the

e�ort but other, better e�ort indicators exist, such as function points, and these can

be used to compute a complexity change cost. The choice of code volume (LOC in

our usage) and code complexity (McCabe complexity in our usage) should be made

appropriate to the architectures under consideration but the characteristics of the

complexity change cost based on pre and post integration activities are equivalent

with respect to the trends and relative magnitudes (relative as measured between

architectural approaches).
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14. DISCUSSION

In this chapter we will discuss the value of the research presented in this thesis.

In addition, we will examine some limitations of the research and use these limitations

to motivate a discussion of further research that serve as extensions to this research.

14.1 Contributions

The motivation for conducting this research was to show the value of applying

best practice software engineering through an integration approach based on service

orientation. This approach is inherently focused on the integration of heterogeneous

systems into an extended system of collaborating interaction. To show the value

of a service oriented approach, we constructed a set of metrics designed to capture

the changes in complexity of the system resulting from integration activities and to

associate that complexity change to an economic consideration of the level of e�ort

required to e�ect the integration. Several contributions result from this research.

The �rst contribution is the de�nition and prototype implementation of a ser-

vice oriented approach to integrating software capabilities within a robotic platform.

The use of a service oriented approach to integration in general is not new or novel,

having been used in the context of business enterprise architectures for several years.

However, the application to robotic platforms is a new domain of application re-

quiring a change of view of the robot platform as an enterprise that di�ers from

the current practice. This perspective also requires a reinterpretation of what an

enterprise looks like and with this reinterpretation, the assurance that the underly-

ing concepts of enterprise architecture and service orientation have been addressed.

The recent emergence of systems such as ROS [Quiqley et al., 2009] are indications

that the robotics community is starting to look for more loosely coupled solutions to
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constructing robotic platforms and some form of service perspective underlies those

solutions.

A further contribution resulting from the enterprise perspective is that we now

have tools to move from consideration of a single robotic platform as an enterprise.

We can use the same techniques and conceptual model to view a single robotic plat-

form as a member of an enterprise, where now the enterprise consists of multiple

robots collaborating on tasks. With this shift in scale, we can now consider that each

robotic platform while maintaining an internal enterprise, is also a producer or con-

sumer of services in the larger enterprise. Similarly, collaborating groups of robots

can be viewed as an entity collaborating in a much larger enterprise consisting of

multiple groups of collaboration nodes. Thus, we have achieved a form of scalability

in which the same architectural principle and approach may be applied at multiple

operational scales. The utility of this scalability is that increasingly, robots do not

operate in isolation and in many applications, particularly military applications, mul-

tiple organizations control multiple groups of robots and must collaborate e�ectively

across ownership domains (see, e.g., U.S. Department of Defense [2009]).

The second contribution of this research is the de�nition of a metric for assess-

ing the level of e�ort required to perform integration tasks through the change cost

metric. While portions of the de�nition of the metric are not new, the application of

the scale factors to e�ort and complexity metrics to account for the overall impact of

the change, the use of total lines of code touched during the integration, and the pa-

rameterization by architectural location of the contributing factors to the metrics are

new. The results of the application of the metric to actual project activities indicates

that the metric captures not just the immediate di�culty in doing an integration

task, but the overall trend of repeated integrations using the same architectural ap-

proach. In the case of SOA, the large upfront cost of the approach was justi�ed in

the signi�cantly reduced costs to perform subsequent integrations. Similarly, for the

point-to-point approach, the metric indicates a trend of increasing costs to add addi-

tional capabilities onto an already costly integration base. The parameterization by

architectural location of the factors contributing to the complexity change cost metric
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also support the concept that moving or hiding complexity within general use frame-

work components adds signi�cant value to the users of service oriented approaches

to integration. This complexity hiding removes the user from direct contact with

the integration complexity and further spreads the cost of that complexity across

potentially many similar users.

Finally, a third contribution lies in the de�nition of a service descriptor suitable

for use within robotic applications. Use of such a service descriptor allows for the

dynamic generation of service capabilities as needed and in a form suitable for use

by consumers implemented in a variety of programming languages using a variety of

platforms and a variety of access models. Typical SOA service descriptors are for

services accessed over HTTP using SOAP packaging forms or for the provision and

consumption of services using a Java implementation. This condition exists because

the origin of services within the business community has been driven by the use of Web

Services making use of predominantly web transport protocols and the fact that many

businesses have implemented business logic within application servers such as the

Java Enterprise Edition (formerly J2EE) platform or the Microsoft .NET platform.

In addition to the use of the service descriptor for service generation, a portion of the

metrics collection process is embodied within the code generation process based on

the service descriptor. The dynamic coupling of the generated components is easily

obtained from the generation process and since the metrics for complexity change

cost do not include generated code in the computation, the measurements needed for

the factors of the complexity change cost are isolated to a smaller number of easily

measured modules.

14.2 Limitations

No research is performed without limitations to what was or what could be

done. This research is no exception. Some of the limitations are due to time con-

straints while others are a result of boundaries imposed to prevent the principles being

investigated from being obscured. In this section, we describe the most prominent
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limitations.

Despite our description of this approach as service oriented, there some key

features of service orientation that are not described in this research. These features

include SOA governance, management, security, and service discovery. SOA gover-

nance is a process in which stakeholders mutually agree to the policies and guidelines

for participation in the service oriented system. Management is the complementary

concept to governance in its monitoring and enforcement of the governance policies

and guidelines. We have not explicitly described these for the application of service

oriented architectures on robotic platforms. However, there is implicit policy de�ned

in the use of the service descriptor, the use of the ESB, and the use of the abstract

communications base class. These policies are enforced through code generation and

the monitoring capabilities provided by the ZeroC IceStormTM capability to track

message �ow. Similary, use of ZeroC IceStormTM provides an implicit form of ser-

vice discovery which could have been encapsulated within a module for querying the

message broker for details about the services available via the set of registered topics.

Security in a SOA environment is of the utmost importance but since we were con-

cerned with demonstration of the technical feasibility of the approach, we felt that the

additional complexity of securing services would have obscured the more fundamental

concept of technical feasibility.

Readers familiar with SOA may be asking where the Web Services Description

Language (WSDL) and Simple Object Access Protocol (SOAP) descriptions are. We

have purposely ignored the notion of �web services� since the intent is to show how

service orientation can be applied to environments in which web protocols are not

dominant or even present. Our ESB approach is based on simple TCP/IP protocols

and can thus be easily extended to the HTTP protocols prevalent in use by web

services if needed. Web services represent only a portion of service orientation and

are based on ubiquitous web protocols. We are more concerned with the ability to

support service orientation with protocols other than web protocols. While this is not

truly a limitation, the association of SOA with web services causes much confusion

when services are discussed that are not web based.
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We have limited the granularity of how location assignments are made for

components to just three categories: base, new, and framework. Finer grained de-

compositions are possible, particularly within the framework location, that provide

insight into exactly where complexity is being accumulated and how this provides

bene�ts for di�erent architectural approaches. An example would be the decom-

position of the framework location into localizations associated with the transport

protocol, the message exchange patterns, infrastructure services, and basic messag-

ing support. Since these areas are relevant to service orientation, a detailed analysis

of how di�erent architectural approaches handle these localizations would be useful

when comparing those alternative approaches to SOA approaches.

The possibility exists that particular combinations of code volume metrics and

complexity metrics used in computing the Complexity Change Cost might exhibit

insensitivity to the scope of changes for particular integrations. However,the choices

we used did not show any speci�c insensitivity to the types of changes we anticipated

in performing integration. Further investigation would be needed to explore various

combinations of code volume and code complexity to gain insight into the sensitivity

of the metric to the particular choices of component metrics. We did not perform this

analysis since our investigation was focused on the application of service orientation

to the robotic platform environment.

Finally, we restricted our ESB to handling strictly messaging over TCP/IP.

This restriction was made because of a lack of support for other transport protocols

in performing basic messaging. In a true SOA, such a restriction would not need

to be imposed or the governance policies would specify the conditions under which

TCP/IP was applicable, when the use of a service interface was appropriate, and

alternatives and the appropriate context for those alternatives to the use of TCP/IP

messaging. As an example, consider how streaming video might be used in a service

interface. De�nition of a service interface to retrieve such a data stream by single

frames would be inappropriate because of the large overhead and latency associated

with making a single service call. Governance policies can be invoked in such cases to

specify that the requirements for use of a streaming data source are to invoke a service
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interface to gain access to and manage the streaming data source and then associate

a point-to-point connection over which the actual data may be provided. This type of

out of band control capability is similar to that used in CANBus applications where

separate communication lines exist for the movement of control and data. We have

provided a similar capability in the separation of the data stream as �Data Services�

and the source of such data streams in �Sensor Services.�

14.3 Extensions

The architecture and approach detailed in this thesis form a foundation for

continued development. There are several directions for further developoment that

were not pursued including those items described in the previous section on limita-

tions. Those areas include the following:

1. Adaptation of the service infrastructure for real-time or near real-time capabil-

ities. This adaptation includes

(a) Use of real-time wire protocols such as CAN-bus and Pro�Bus as service

infrastructure transport protocols,

(b) Service access under real-time and near real-time requirements, and

(c) Performance analysis and management of real-time service use.

2. On demand, adaptive selection, management, and mediation of protocols by

the service infrastructure based on service consumer speci�ed Quality of Service

(QoS) pro�les

3. Extension to collaborative systems involving multiple heterogeneous autonomous

platforms

4. Further investigation into the sensitivity of the complexity change cost metric

including application to �ner granularity localizations

5. Further build-out of the service infrastructure

The following paragraphs provide more detail for each of these items.
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14.3.1 REAL-TIME SERVICE ACCESS

The prototype implementation of our service-oriented architecture relies on a

message oriented middleware (MoM) capability, namely ZeroC's IceStorm product,

to implement the di�erent service invocation patterns. MoM products are typically

built upon internet protocols such as TCP/IP, UDP, or HTTP and rely on either

a message broker, a message queue, or some combination of the two to enable mes-

sage exchange between entities. These characteristics make MoM-only ESB solutions

undesirable for working with autonomous systems due to the large number of com-

ponents requiring communication buses that handle real-time command, control, and

data tra�c. Examples of these buses include

1. The Controller Area Network Bus (CAN-bus) [CANBus, 1991] which is a per-

vasive standard in systems requiring fast, timely delivery of control and data

messages. Automotive control systems involving an electronic control unit are

a typical application for CAN-bus. CAN-bus message �frames� are designed

to be very small with bit-level encoding of packet metadata and up to 8 bytes

of data payload. CAN-bus physical implementations rely on distributed mas-

ter controllers, message broadcasting, and message prioritization based on the

content of the message identi�er. Most physical installations using CAN-bus

provide separate communication lines for control packets and data packets.

2. The Process Field Bus (Pro�bus) [Pro�bus, 2002] which is used in produc-

tion and process automation applications. Pro�bus is typically used in 2 vari-

ants: Decentralized Peripherals (Pro�bus DP) for sensor and actuator operation

through a central controller or a network of controllers and Process Automa-

tion (Pro�bus PA) for monitoring through process control systems. Pro�bus is

most useful for high speed, time critical applications and for applications with

complex communication requirements.

Use of service functionality accessible via these protocols requires creation of protocol

adapters to incorporate the protocol into the ESB. Protocol bridging and mediation

services will be required for use of these services by consumers not using the protocols.
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Given the deadline-based delivery requirements of these types of protocols, it seems

unlikely that a brokering component as used in MoM applications will be useful or

desirable due to the added latency. Practical use of these protocols will also require

�exible data rate matching between the consumer and provider since the provider

data rates can be as high as 12 Mbps (in the case of Pro�bus) and a consumer not

on the Pro�bus is likely operating at a lower data rate. This impedance matching is

a form of protocol mediation and can be facilitated through various means such as

the use of a data bu�ering capability as described in the OMG's Data Distribution

Speci�cation [OMG, 2007] or through sampling approaches.

14.3.2 DYNAMIC AND ADAPTIVE RUNTIME PROTOCOL SELEC-

TION

An underlying reason for using an ESB within an SOA is to accommodate fed-

eration of heterogeneous networks within an enterprise. The SOA approach presented

in this thesis provides an abstraction intended to hide the details of the network type

and interaction protocol used for a particular service interaction. This decoupling is

extended by having a delegate mediate the call between the protocol adapter and the

service participant. However, the architecture does not support an ability to dynami-

cally and adaptively select the transport protocol from a set of available options, i.e.,

the protocol adapter choice is static. This static coupling creates strong coupling of

the service participant to the initial choice of adapter. To remove this strong cou-

pling, the protocol and connection should not be chosen until the request is made and

the choice should be one that satis�es criteria associated with the particular invoca-

tion at both the consumer and provider endpoints. Delaying selection of the protocol

and connection allows the service infrastructure to make the best selection based on

knowledge of

1. The endpoint requirements,

2. The invocation type,

3. The current performance of known protocols,
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4. With the addition of predictive capabilities, a knowledge of anticipated loading

on speci�c protocols that have a higher priority, e.g., anticipation of control

actions requiring the use of a speci�c channel for sending priority control signals

In practice, we might choose to make a predetermined choice for this protocol choice

but in an operational environment with resource constraints, a better use of available

resources might be to allow for other uses of such a channel but in a mode that allows

for immediate pre-emption.

A candidate set of criteria to start from are QoS requirements speci�ed by the

service consumer. The QoS requirements are typically metrics on performance, ca-

pacity, and load tolerance that can be used to indicate a consumer's invocation needs.

Similarly, service providers typically advertise QoS capabilities as a part of service

registration or in a provider service descriptor. For example, choosing a CAN-bus

adapter for an invocation that must send large data structures is not likely to be

an optimal choice. However, if the consumer also has real-time data requirements,

the message-oriented adapters are not suitable unless the only available services use

message-oriented channels. In addition to the speci�c QoS parameters, the consumer

can specify a prioritization of the requirement parameters to assist in selection deci-

sions that may require a trade-o� choice. The selection of an adapter is then made

based on the parameter values at invocation time, the available channels, and an

understanding of the current performance of those channels. In support of this capa-

bility, the service infrastructure or the ESB must provide a mechanism for monitoring

and persisting the relevant QoS metric data for known adapters and channels as well

as maintaining up-to-date performance information on end-to-end connections using

those adapters. A separate mechanism must be provided by the adapters for report-

ing relevant QoS data and to support dynamic loading of the protocol adapters into

the service participant execution space.

Using this type of approach for protocol selection views protocol choice as a

service request made to the service infrastructure. Thus, any service request requir-

ing a protocol selection becomes an orchestrated service in which the infrastructure

coordinates the marshalling of the required resources and then directs the execution
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sequence of those resources. This view of protocols in the service-oriented environ-

ment is new. Commercial ESB products tend to predetermine the choices of protocols

and channels allowing some �exibility by de�ning multiple protocol choices for a par-

ticular service. However, the �exibility only extends to use of the protocols in the

stated order if a protocol higher in the sequence is unavailable. This predetermination

requires analysis and foresight by the architect or designer and is of limited value in

environments for which protocols may be routinely added or removed.

14.3.3 MULTI-AGENT EXTENSIONS

The demonstration of the prototype architecture was done through a limited

set of integration activities con�ned to a single robotic platform. There is nothing in

any of the architectural discussions that requires the consideration of a single plat-

form: we made the choice as a way to constrain the problem. Extending the service

oriented concepts beyond the individual platform means that we can consider the

individual platform as a potential service or as a potential service provider. The en-

terprise is then extended to subsume groups of robots where now the service package

concept is focused on the types of services provided by a particular group of robots.

Similarly, groups of collaborating robots can be viewed as potential service entities

participating in an enterprise in which there exists multiple similar groupings of ro-

bots, other types of platforms, and humans. Use of this view allows for the creation

of ad hoc collaborations when needed without signi�cant development e�ort. The

approach also allows for the augmentation of existing capabilities through the addi-

tion of platforms providing needed capabilities such that the existing platforms do

not require modi�cation.

14.3.4 COMPLEXITY CHANGE COST METRIC INVESTIGATION

Our construction of the complexity change cost metric was based on the as-

sumption that code volume metrics as an indicator of level of e�ort allows an assign-

ment of a unit �cost� to the complexity changes resulting from integration activities.

The initial choice of SLOC as a level of e�ort was made since many of the tools
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available provide SLOC measurements and many software organizations continue to

use SLOC as an e�ort estimator. Implicit in the initial assumption is that level of

e�ort and code complexity are correlated. We have not proven that in this thesis but

instead used the assumption as the basis for an operational approach to a rudimen-

tary validation of the metric through the measurement of actual integration tasks.

The results obtained for the complexity change cost metric �t with our experience in

performing integrations but this is insu�cient evidence on which to accept the valid-

ity of the metric. A further investigation into how the metric tracks complexity and

e�ort when di�erent code volume and complexity metrics are used. This analysis is

particularly important when we consider that SLOC measurements are problematic

in service environments where a considerable portion of code is either unavailable or

automatically generated. Automatic generation of code arti�cially in�ates code vol-

ume metrics and such metrics are being deprecated for use in these environments. In

addition, an analysis of the sensitivity and limits to the validity of the metric require

an in-depth analysis. Finally, our parameterization of the metric by identi�cation of

the location of the changes requires further investigation to understand how well the

metric captures the e�ort cost when a �ner grained localization is used.

14.3.5 EXPANSION OF SERVICE INFRASTRUCTURE

The approach we used to provide an ESB was simple in that we ignored larger

service infrastructure capabilities such as security, logging, auditing, protocol me-

diation, management, discovery, and governance. These additional capabilities are

necessary for a fully capable service oriented architecture. Having demonstrated that

a service oriented approach provides utility to integration tasks, the next step is to

build-out the service infrastructure in conjunction with the expansion of the protocol

support to realtime protocols. This more complete ESB is the ultimate goal and will

require investigation of where existing commercial technologies are applicable and

where components must be constructed to �ll the gaps. An additional optional task

is to consider how a standard service API for the various service categories could

be created. Use of a standard API means that the service infrastructure speci�es
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an API appropriate for each service type and enforces its use. For example, a Data

Service API would include Create, Retrieve, Update, and Delete (CRUD) operations

commonly associated with database operations but would extend those operations to

non-database data sources such as sensor data streams. We are continuing e�ort in

these areas but because they are not fully developed, have not included discussion of

them except in this section.
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15. CONCLUSION

In this thesis we have presented an approach to integration for robotic plat-

forms that is based on best practice software engineering principles, sound software

architectural principles, and a change in the perspective of what the robotic platform

represents. Instead of the view of the robot as a collection of hardware and software

supporting that hardware, we have shown that viewing the robot as an enterprise

system in which services are o�ered and consumed provides a basis for the use of

enterprise architecture approaches to handling integration. Through the completion

of project based integration tasks in support of the SUBTLE MURI project, we were

able to demonstrate that use of a service oriented approach facilitates integration

naturally and allows for easier addition of new capabilities as needed. Additionally,

we de�ned a metric, the complexity change cost, to be used as a measure of the

e�ort required to change the complexity of a system. This metric allowed us to com-

pare integration approaches based on di�erent architectural principles in a way that

captured the utility of each architecture in supporting integration.

Service orientation is fundamentally about incorporating heterogeneity into

systems without requiring signi�cant recoding, rework, or new component creation.

Robotic platforms are models of heterogeneity with the variety of sensors, software

packages, and applications in use on a single platform at any instant. Extension of

this concept beyond the individual platform provides a model for collaborative uses of

robots where the integration between the robots is done using the same architectural

approach as the integration on the individual robot. The work described in this

thesis is a foundation for further extensions to the service concept and the possibilities

enabled by service orientation will permit new ways of thinking about how robots are

to be used.
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A. SERVICE DESCRIPTOR

The code generator described in Section 5.2.1.3 uses an XML description of

the service and the characteristics of either the consumer or provider to create the

software components needed to expose or use the service. The XML description is

an instance document of an XML Schema De�nition (XSD) for services called the

Service Descriptor. Separate de�nitions of the service pro�les for the consumer and

provider must be made. The de�nitions in the service descriptor XSD are presented in

the next section accompanied by a brief explanation. Taken in toto, these de�nitions

form the service descriptor.

A.1 Service Descriptor De�nitions

The XML target namespace for the de�nitions in the service descriptor schema

is �tns� and is de�ned in the XSD as

Service Descriptor Namespace

<schema xmlns="http://www.w3.org/2001/XMLSchema"

targetNamespace="http://www.w3c.org/services"

xmlns:tns="http://www.w3c.org/services"

elementFormDefault="qualified">

The de�nitions in the remainder of this section reference that target namespace.

A.1.1 SERVICE CALL PARAMETER

A service call parameter type is an argument de�ned by the service provider

in the service interface speci�cation. The default value is not required but is rec-

ommended since in some cases the code generator may not be able to determine a

reasonable default.
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Service Call Parameter

<complexType name="parameterType">

<sequence minOccurs="1">

<element name="parameterName"

type="string"

maxOccurs="1"/>

<element name="parameterDataType"

type="tns:dataType"

maxOccurs="1"/>

<element name="defaultValue"

type="string"

minOccurs="0" maxOccurs="1"/>

</sequence>

</complexType>

A.1.2 TARGET LANGUAGE

The target language is the programming language output from the code gen-

eration process. The prototype implementation supports code generation in Java,

C++, and Python.

Target Language

<simpleType name="targetType">

<restriction base="string">

<enumeration value="java"/>

<enumeration value="c++"/>

<enumeration value="python"/>

</restriction>

</simpleType>

A.1.3 MESSAGE EXCHANGE PATTERN

The message exchange pattern (MEP) represents the protocol for the types

of messages exchanged between the consumer and the provider. We have identi�ed

5 MEPs based on those de�ned in Josuttis [2007], but in the prototype implemen-

tation, only the Request/Response (QueryResponse in our usage) and One Way or

AsynchronousRequest patterns are implemented. The remaining 3 MEPs are vari-

ants of the QueryResponse and AsynchronousRequest. The point-to-point MEPs,

SynchronousP2P and AsynchronousP2P, demand a tighter coupling of the consumer
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to the provider but are de�ned for those cases where the round trip execution time

would limit the utility of the service.

Message Exchange Pattern

<simpleType name="communicationType">

<restriction base="string">

<enumeration value="QueryResponse"/>

<enumeration value="AsynchronousRequest"/>

<enumeration value="SynchronousP2P"/>

<enumeration value="AsynchronousP2P"/>

<enumeration value="LightweightEvent"/>

</restriction>

</simpleType>

A.1.4 PACKAGING FORM FACTOR

The packaging form factor type is used to indicate to the code generator how

to package the generated adapter and proxy libraries. This type is used in conjunction

with the Operating System type to create the appropriate binary format and select

the necessary set of compile and link �ags for the generated make�le.

Packaging Form Factor

<simpleType name="operationType">

<restriction base="string">

<enumeration value="executable"/>

<enumeration value="shared-lib"/>

<enumeration value="static-lib"/>

<enumeration value="object-file"/>

</restriction>

</simpleType>

A.1.5 OPERATING SYSTEM

The operating system type is provided to ensure the generated code and ac-

companying build �les are correct for the platform. Note that in the current data

model, speci�cation of a di�erent hosting platform requires de�nition of a new pro�le.

The prototype implementation supports Linux fully and only BSD formats for use on

Mac OSX.
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Operating System

<simpleType name="hostType">

<restriction base="string">

<enumeration value="Windows"/>

<enumeration value="Linux"/>

<enumeration value="MacOS"/>

</restriction>

</simpleType>

A.1.6 SERVICE DATA TYPES

The Service Data Types are de�ned for use as service call parameter and return

types. The type names are a subset of the data types de�ned in the ZeroC SLICE

language but are su�ciently generic to support a large percentage of uses. The �blob�

type is a binary large object and is to be considered as a collection of binary data

with an unde�ned or unknown structure. This type is provided to support imagery,

audio, and other high volume binary data.

Service Data Types

<simpleType name="dataTypes">

<restriction base="string">

<enumeration value="void"/>

<enumeration value="int"/>

<enumeration value="float"/>

<enumeration value="string"/>

<enumeration value="blob"/>

</restriction>

</simpleType>

A.1.7 SERVICE IMPLEMENTATION FORM FACTOR

The service implementation form factor type is used to describe how the service

provider has implemented and packaged the service functionality. This type is only

relevant to the �provider� role and is used to create the mechanisms needed for invok-

ing the service functionality when a request is received at the service provider. Note

that all 3 elements are required and intended to be interpreted as a fully quali�ed

path to the executable implementation of the service functionality. For languages
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with packaging constructs such as Java packages or C++ namespaces, the �impl-

class� entry should be the fully quali�ed class name. The �bin-location� element is

the �le system directory path to the binary �le containing the executable code. This

path is assumed to be relative to the location of the adapter and proxy libraries or

executables.

Service Implementation Form Factor

<complexType name="implType">

<sequence minOccurs="1">

<element name="impl-method" type="string"/>

<element name="impl-class" type="string"/>

<element name="bin-location" type="string"/>

</sequence>

</complexType>

A.1.8 CODE GENERATION PROFILE

The code generation pro�le type is used to identify which artifacts to generate

and what platform constructs should exist in those artifacts.

Code Generation Profile

<complexType name="serviceGenerationProfile">

<sequence minOccurs="1">

<element name="target-language" type="tns:targetType"/>

<element name="operation-model" type="tns:operationType"/>

<element name="host-model" type="tns:hostType"/>

</sequence>

</complexType>

A.1.9 SERVICE ACTOR

The service actor type describes whether the code is to be generated for the

service provider or the service consumer.



144

Service Actor

<complexType name="serviceActorType">

<choice>

<element name="provider-profile"

type="tns:serviceGenerationProfile"

minOccurs="0" maxOccurs="1"/>

<element name="consumer-profile"

type="tns:serviceGenerationProfile"

minOccurs="0" maxOccurs="1"/>

</choice>

</complexType>

A.1.10 SERVICE VERSION NUMBER

The service version number is provided to allow for consistency and compliance

checking. The prototype implementation does not look at service versions to ensure

consistency between the consumer and provider but a robust SOA would provide

version checking at many di�erent levels, e.g., data type, service, or service level

agreement versioning, to facilitate enterprise management functions.

Service Version Number

<simpleType name="versionType">

<restriction base="string">

<pattern value="([0-9])+.([0-9])+.([0-9])+([a-z])*"/>

</restriction>

</simpleType>

A.1.11 SERVICE DEFINITION

The service de�nition type is the service pro�le for a single service.
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Service Definition

<complexType name="serviceType">

<sequence>

<element name="name"

type="string"

minOccurs="1" maxOccurs="1"/>

<element name="version"

type="tns:versionType"

minOccurs="1" maxOccurs="1"/>

<element name="implementor"

type="tns:implType"

minOccurs="1" maxOccurs="1"/>

<element name="service-actor"

type="tns:serviceActorType"

minOccurs="1" maxOccurs="1"/>

<element name="comm-model"

type="tns:communicationType"

minOccurs="1" maxOccurs="1"/>

<element name="return"

type="tns:dataTypes"

minOccurs="1" maxOccurs="1"/>

<element name="parameters">

<complexType>

<sequence minOccurs="0" maxOccurs="unbounded">

<element name="parameter"

type="tns:parameterType"/>

</sequence>

</complexType>

</element>

</sequence>

</complexType>

A.1.12 SERVICE PACKAGE NAMING

The service package naming type is used to provide namespace separation for

di�erent services. The namespace is similar to Java package naming.

Service Package Naming

<complexType name="servicePackageNameType">

<sequence>

<element name="packageName"

type="string"

minOccurs="1" maxOccurs="unbounded"/>

</sequence>

</complexType>
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A.1.13 SERVICE PACKAGE

The service package type is provided to allow for grouping of services having

some conceptual or logical relationship and for which the service pro�le de�nitions

would exist in the same package structure. The type is recursively de�ned to allow

for the de�nition of service pro�les at any level of a package naming hierarchy. With

respect to code generation, the service package structure is used to create a �le system

directory structure containing the generated code and build �les.

Service Package

<element name="service-package">

<complexType>

<sequence>

<element name="servicePackageName"

type="tns:servicePackageNameType"

minOccurs="1" maxOccurs="unbounded"/>

<element name="service"

type="tns:serviceType"

minOccurs="1" maxOccurs="unbounded"/>

<element ref="tns:service-package"

minOccurs="0" maxOccurs="unbounded"/>

</sequence>

</complexType>

</element>

</schema>



147

B. QUALITY ATTRIBUTE DESCRIPTIONS

The quality attributes referred to in Section 5.1.1 are de�ned and explained in

detail in this appendix. For more information on quality attributes, refer to Barbacci

et al. [1995].

Extensibility The quality of a system that allows the system capabilities to be ex-

tended by the addition of new functionality when needed. Extensibility in an

architecture can be obtained through mechanisms designed to support the ad-

dition of new components without the need to rebuild the system. This type

of architecture typically supports the integration of new components through

changes in con�guration information. Examples of extensible systems are sys-

tems embodying messaging systems, plug-and-play component technology, or

object location services1 such as the Naming Service in a CORBA system. Other

types of extensible systems provide �hooks� from which a developer can de�ne

new functionality and attach it to the existing system. Examples of these types

of systems include Emacs and the Eclipse IDE.

Maintainability The quality of a system that supports normal system maintenance

activities such as upgrades, patching, and con�guration but also supports repair

activities such as restoration of the system to full functionality within speci�ed

time constraints following an outage or fault. Maintainability can also be ex-

pressed as the ease with which maintenance teams can identify, isolate, debug,

and repair system defects. Maintainability can be achieved through well planned

logging and auditing capabilities, helpful error messages, and usable, up-to-date

documentation.

1Object location services are software components that hold pointers to objects in a system and
may be queried by other applications who wish to use these components.
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Modi�ability The quality of a system that permits changing parts of the system

without impacting the structure or the operation of the entire system.2. Note

that modi�ability and extensibility are remarkably similar. They di�er in that

modi�ability focuses on modi�cation of the existing functionality to gain addi-

tional or new functionality whereas extensibility focuses on the addition of new

functionality without modifying the existing functionality. Modi�ability in a

system may be achieved by limiting the interconnections between components

used in the system. This limitation permits modi�cation of a component with-

out the e�ect spreading to other components even when those components have

some connection to the modi�ed component.

Performance The quality of a system that permits tasks to be performed in a mini-

mal amount of time or within a prede�ned interval or in such a way that compu-

tational resource usage is minimized. Performance attributes can be obtained in

architectures by minimizing the layers of code any request must traverse before

being satis�ed or by decreasing the granularity of data passed to and from pro-

cedure calls.3 Performance may also be gained by addition of higher capacity

hardware and implementation of certain algorithms (such as graphical or signal

processing algorithms) directly in hardware. Further performance enhancement

may be had by redundant hardware to allow concurrent request processing or

through the addition of load-balancing mechanisms.

Reliability The quality of a system that permits the system to perform the same

tasks or multiple tasks repeatedly without failure or requiring signi�cant main-

tenance between tasks. We distinguish here between hardware reliability and

software reliability although both are typically quoted as Mean Time Between

2Easily modi�ed is a highly subjective term which is strongly dependent upon the system use
and so will be de�ned di�erently for di�erent systems.

3In Enterprise Systems, this data granularity severely a�ects network performance by increasing
the amount of packet tra�c in the network. For example, if we need a mailing address with a
name from a database, we might have to use a couple of queries to get all of the information. In
a networked system, this translates into a large number of data packets plus the additional query
tra�c. By structuring the data di�erently, we can ask for the complete dataset in a single query
and reduce the network overhead. Similar concepts apply to procedure call granularities.
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Failures (MTBF) and Mean Time To Return/Repair (MTTR) which are hard-

ware reliability concepts. Reliability in a system may be achieved in many

di�erent ways, although it is often obtained through redundant hardware or

software components. Other means of achieving reliability are to use transac-

tional operations, apply quality of service characteristics to messaging, or to

provide system health monitors for critical components.

Scalability The quality of a system that permits the system components to be used

in small-scale systems as readily as in large-scale systems. This attribute implies

that the component(s) may be used more or less intact on systems of any size

and that the choice of components may be easily made based on the platform

size, with a smaller subset of the components being used without degraded

capability in a smaller system.4. Scalability may be achieved through the use of

a minimal set of components applicable at all relevant scales. Scalability is also

de�ned as the ability of the system to perform without degradation, maintain

message throughput, or maintain round-trip processing times under increasing

system loading.

Usability The quality of a system that permits an inexperienced user or developer to

make use of the architecture or system with minimal training or skill. While the

phrase �minimal training or skill� is very subjective, we mean it in the sense that

the average user or developer will be capable of manipulating the system without

requiring years of training. Another view of usability is through consideration

of the learning curve required to be pro�cient with the architecture or system.

4Note that we intend degraded capability to imply that the system performs the available func-
tions as easily in the small system as in the large system. The smaller system may be viewed as
degraded, however, in the sense that fewer components may be used in a smaller system than in a
larger system.
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C. SOA WDB INTEGRATION DETAIL DATA

The coupling data obtained from the SOA baseline code are shown in Table

C.1. The measures of LOC and McCabe complexity and the values for complexity

change cost for the SOA baseline code are shown in Tables C.2 and C.3. Summarized

coupling, LOC, and complexity metrics by location are shown in Tables C.4, C.5 and

C.6.

C.1 First Integration

The coupling data obtained from the SOA �rst integration code are shown in

Table C.7. The measured values of LOC, McCabe complexity, and complexity change

cost for the SOA �rst integration code are shown in Tables C.8 and C.9. Summarized

data by location are shown in Tables C.10, C.11 and C.12.

Software Element L sa(L) da(L) se(L) de(L)

ATRV_WDB_Impl_C F 1 0 2 0

ATRV_WDB_Impl_S F 1 0 2 0

ServiceUtilities F 4 0 3 1

MURI_DataRep F 1 0 1 0

IceStormAdapter F 1 0 10 1

DataServiceMain N 0 0 1 0

CPPTestClient B 0 0 1 0

Table C.1: Detailed coupling data for the baseline SOA approach to the WDB inte-
gration task.
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Software Element L λpre(L) λpost(L) ΓA(L) ΓR(L) ΓM (L) λ̂(L) Γ̄(L)

ATRV_WDB_Impl_C F 0 22 22 0 0 1.0 22.0

ATRV_WDB_Impl_S F 0 20 20 0 0 1.0 20.0

ServiceUtilities F 0 87 87 0 0 1.0 87.0

MURI_DataRep F 0 22 22 0 0 1.0 22.0

IceStormAdapter F 0 92 92 0 0 1.0 92.0

DataServiceMain N 0 13 13 0 0 1.0 13.0

CPPTestClient B 0 14 14 0 0 1.0 14.0

Table C.2: Detailed LOC data for the baseline SOA approach to the WDB integration
task.

Software Element L vgpre(L) vgpost(L) v̂g(L) v̄g(L) E(L)

ATRV_WDB_Impl_C F 0 4 1.0 4.0 5.50

ATRV_WDB_Impl_S F 0 4 1.0 4.0 5.00

ServiceUtilities F 0 20 1.0 20.0 4.35

MURI_DataRep F 0 4 1.0 4.0 5.50

IceStormAdapter F 0 14 1.0 14.0 6.57

DataServiceMain N 0 1 1.0 1.0 13.00

CPPTestClient B 0 2 1.0 2.0 7.00

Table C.3: Detailed complexity data for the baseline SOA approach to the WDB
integration task.

Location sa(L) da(L) se(L) de(L)

Framework 8 0 18 2

Base 0 0 1 0

New 0 0 1 0

Table C.4: Summarized coupling data by location for the baseline SOA approach to
the WDB integration.
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Location λpre(L) λpost(L) ΓA(L) ΓR(L) ΓM (L) λ̂(L) Γ̄(L)

Framework 0 243 243 0 0 1.0 243.0

Base 0 13 13 0 0 1.0 13.0

New 0 14 14 0 0 1.0 14.0

Table C.5: Summarized LOC data by location for the baseline SOA approach to the
WDB integration task.

Location vgpre(L) vgpost(L) v̂g(L) v̄g(L) E(L)

Framework 0 46 1.0 46.0 5.28

Base 0 1 1.0 1.0 13.00

New 0 2 1.0 2.0 7.00

Table C.6: Summarized complexity data by location for the baseline SOA approach
to the WDB integration.

Software Element L sa(L) da(L) se(L) de(L)

ATRV_WDB_Impl_C F 1 0 2 0

ATRV_WDB_Impl_S F 1 0 2 0

ServiceUtilities F 4 0 3 1

MURI_DataRep F 1 0 1 0

IceStormAdapter F 1 0 10 1

DataServiceMain N 0 0 1 0

CPPTestClient B 0 0 1 0

Table C.7: Detailed coupling data for the �rst integration in the SOA approach to
the WDB integration task.
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Software Element L λpre(L) λpost(L) ΓA(L) ΓR(L) ΓM (L) λ̂(L) Γ̄(L)

ATRV_WDB_Impl_C F 22 22 0 0 0 1.00 0.00

ATRV_WDB_Impl_S F 20 20 0 0 0 1.00 0.00

ServiceUtilities F 87 87 0 0 0 1.00 0.00

MURI_DataRep F 22 22 0 0 0 1.00 0.00

IceStormAdapter F 92 92 0 0 0 1.00 0.00

DataServiceMain N 13 14 1 0 0 1.08 1.08

CPPTestClient B 14 18 4 0 0 1.29 5.14

Table C.8: Detailed LOC measurement data for the �rst integration in the SOA
approach to the WDB integration task.

Software Element L vgpre(L) vgpost(L) v̂g(L) v̄g(L) E(L)

ATRV_WDB_Impl_C F 4 4 1.0 0.00 0.00

ATRV_WDB_Impl_S F 4 4 1.0 0.00 0.00

ServiceUtilities F 20 20 1.0 0.00 0.00

MURI_DataRep F 4 4 1.0 0.00 0.00

IceStormAdapter F 14 14 1.0 0.00 0.00

DataServiceMain N 1 1 1.0 0.00 0.00

CPPTestClient B 2 2 1.0 0.00 0.00

Table C.9: Detailed complexity data for the �rst integration in the SOA approach to
the WDB integration task.

Location sa(L) da(L) se(L) de(L)

Framework 8 0 18 2

Base 0 0 1 0

New 0 0 1 0

Table C.10: Summarized coupling data by location for the �rst integration in the
SOA approach to the WDB integration task.



154

Location λpre(L) λpost(L) ΓA(L) ΓR(L) ΓM (L) λ̂(L) Γ̄(L)

Framework 243 243 0 0 0 0.00 0.00

Base 13 14 1 0 0 1.08 1.08

New 14 18 4 0 0 1.29 5.14

Table C.11: Summarized LOC data by location for the �rst integration in the SOA
approach to the WDB integration task.

Location vgpre(L) vgpost(L) v̂g(L) v̄g(L) E(L)

Framework 46 46 1.0 0.0 0.0

Base 1 1 1.0 0.0 0.0

New 2 2 1.0 0.0 0.0

Table C.12: Summarized complexity data by location for the �rst integration in the
SOA approach to the WDB integration task.

C.2 Second Integration

The coupling data obtained from the SOA second integration code are shown in

Table C.13. The measures of LOC, McCabe complexity, and complexity change cost

for the SOA second integration code are shown in Tables C.14 and C.15. Summarized

coupling, LOC, and complexity data by location are shown in Tables C.16, C.17 and

C.18.

Software Element L sa(L) da(L) se(L) de(L)

ATRV_WDB_Impl_C F 1 0 2 0

ATRV_WDB_Impl_S F 1 0 2 0

ServiceUtilities F 4 0 3 1

MURI_DataRep F 1 0 1 0

IceStormAdapter F 1 0 10 1

DataServiceMain N 0 0 1 0

CPPTestClient B 0 0 1 0

Table C.13: Detailed coupling data for the second integration in the SOA approach
to the WDB integration task.
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Software Element L λpre(L) λpost(L) ΓA(L) ΓR(L) ΓM (L) λ̂(L) Γ̄(L)

ATRV_WDB_Impl_C F 22 22 0 0 0 1.00 0.0

ATRV_WDB_Impl_S F 20 20 0 0 0 1.00 0.0

ServiceUtilities F 87 87 0 0 0 1.00 0.0

MURI_DataRep F 22 22 0 0 0 1.00 0.0

IceStormAdapter F 92 92 0 0 0 1.00 0.0

DataServiceMain N 14 15 1 0 0 1.07 0.0

CPPTestClient B 18 22 4 0 0 1.22 0.0

Table C.14: Detailed LOC data for the second integration in the SOA approach to
the WDB integration task.

Software Element L vgpre(L) vgpost(L) v̂g(L) v̄g(L) E(L)

ATRV_WDB_Impl_C F 4 4 1.0 0.0 0.0

ATRV_WDB_Impl_S F 4 4 1.0 0.0 0.0

ServiceUtilities F 20 20 1.0 0.0 0.0

MURI_DataRep F 4 4 1.0 0.0 0.0

IceStormAdapter F 14 14 1.0 0.0 0.0

DataServiceMain N 1 1 1.0 0.0 0.0

CPPTestClient B 2 2 1.0 0.0 0.0

Table C.15: Detailed complexity data for the second integration in the SOA approach
to the WDB integration task.

Location sa(L) da(L) se(L) de(L)

Framework 8 0 18 2

Base 0 0 1 0

New 0 0 1 0

Table C.16: Summarized coupling data by location for the second integration in the
SOA approach to the WDB integration task.
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Location λpre(L) λpost(L) ΓA(L) ΓR(L) ΓM (L) λ̂(L) Γ̄(L)

Framework 243 243 0 0 0 1.0 0.00

Base 14 15 1 0 0 1.0 1.07

New 18 22 4 0 0 1.0 4.89

Table C.17: Summarized LOC data by location for the second integration in the SOA
approach to the WDB integration task.

Location vgpre(L) vgpost(L) v̂g(L) v̄g(L) E(L)

Framework 46 46 1.0 0.0 0.0

Base 1 1 1.0 0.0 0.0

New 2 2 1.0 0.0 0.0

Table C.18: Summarized complexity data by location for the second integration in
the SOA approach to the WDB integration task.
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D. PLAYER WDB INTEGRATION DETAILED DATA

D.1 Baseline

The coupling data obtained from the Player baseline code are shown in Table

D.1. The measures of LOC, McCabe complexity, and complexity change cost for the

Player baseline code are shown in Tables D.2 and D.3. Summarized coupling, LOC,

and complexity data by location are shown in Tables D.4, D.5 and D.6.

D.2 First Integration

The coupling data obtained from the Player �rst integration code are shown

in Table D.7. The measures of LOC,McCabe complexity, and complexity change cost

for the Player �rst integration code are shown in Tables D.8 and D.9. Summarized

coupling, LOC, and complexity data by location are shown in Tables D.10, D.11 and

D.12.

D.3 Second Integration

The coupling data obtained from the Player second integration code are shown

in Table D.13. The measures of LOC, McCabe complexity, and complexity change

Software Element L sa(L) da(L) se(L) de(L)

wdb_client B 0 0 3 2

wdbinterf_client F 1 1 3 0

wdbinterf_driver F 0 1 5 0

Table D.1: Detailed coupling data for the baseline Player approach to the WDB
integration task.
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Software Element L λpre(L) λpost(L) ΓA(L) ΓR(L) ΓM (L) λ̂(L) Γ̄(L)

wdb_client B 0 23 23 0 0 1.00 23.0

wdbinterf_client F 0 82 82 0 0 1.00 82.0

wdbinterf_driver F 0 68 68 0 0 1.00 68.0

F-Framework, B-Base, N-New

Table D.2: Detailed LOC data for the baseline Player approach to the WDB integra-
tion task.

Software Element L vgpre(L) vgpost(L) v̂g(L) v̄g(L) E(L)

wdb_client B 0 4 1.0 4.0 5.75

wdbinterf_client F 0 16 1.0 16.0 5.13

wdbinterf_driver F 0 10 1.0 10.0 6.80

Table D.3: Detailed complexity data for the baseline Player approach to the WDB
integration task.

Location sa(L) da(L) se(L) de(L)

Framework 1 2 8 0

Base 0 0 3 2

New 0 0 0 0

Table D.4: Summarized coupling data by location for the baseline Player approach
to the WDB integration task.

Location λpre(L) λpost(L) ΓA(L) ΓR(L) ΓM (L) λ̂(L) Γ̄(L)

Framework 0 150 150 0 0 1.0 150.0

Base 0 23 23 0 0 1.0 23.0

New 0 0 0 0 0 1.0 0.0

Table D.5: Summarized LOC data by location for the baseline Player approach to
the WDB integration task.
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Location vgpre(L) vgpost(L) v̂g(L) v̄g(L) E(L)

Framework 0 26 1.0 26.0 5.77

Base 0 4 1.0 4.0 5.75

New 0 0 1.0 0.0 0.00

Table D.6: Summarized complexity data by location for the baseline Player approach
to the WDB integration task.

Software Element L sa(L) da(L) se(L) de(L)

wdb_client B 0 0 3 2

wdbinterf_client F 1 1 3 1

wdbinterf_driver F 0 1 6 1

Table D.7: Detailed coupling data for the �rst integration in the Player approach to
the WDB integration task.

Software Element L λpre(L) λpost(L) ΓA(L) ΓR(L) ΓM (L) λ̂(L) Γ̄(L)

wdb_client B 23 28 5 0 0 1.22 6.09

wdbinterf_client F 82 104 22 0 0 1.27 27.90

wdbinterf_driver F 68 76 8 0 0 1.12 8.94

Table D.8: Detailed LOC data for the �rst integration Player approach to the WDB
integration task.

Software Element L vgpre(L) vgpost(L) v̂g(L) v̄g(L) E(L)

wdb_client B 4 5 1.25 1.25 4.87

wdbinterf_client F 16 19 1.19 3.56 7.83

wdbinterf_driver F 10 11 1.10 1.10 8.13

Table D.9: Detailed complexity data for the �rst integration Player approach to the
WDB integration.
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Location sa(L) da(L) se(L) de(L)

Framework 1 2 9 2

Base 0 0 3 2

New 0 0 0 0

Table D.10: Summarized coupling data by location for the �rst integration Player
approach to the WDB integration task.

Location λpre(L) λpost(L) ΓA(L) ΓR(L) ΓM (L) λ̂(L) Γ̄(L)

Framework 150 180 30 0 0 1.38 41.40

Base 23 28 5 0 0 1.22 6.09

New 0 0 0 0 0 1.00 0.00

Table D.11: Summarized LOC data by location for the �rst integration Player ap-
proach to the WDB integration task.

Location vgpre(L) vgpost(L) v̂g(L) v̄g(L) E(L)

Framework 26 30 1.15 4.60 9.00

Base 4 5 1.25 1.25 4.87

New 0 0 1.00 0.00 0.00

Table D.12: Summarized complexity data by location for the �rst integration Player
approach to the WDB integration task.
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Software Element L sa(L) da(L) se(L) de(L)

wdb_client B 0 0 3 2

wdbinterf_client F 1 1 3 2

wdbinterf_driver F 0 1 7 2

Table D.13: Detailed coupling data for the second integration Player approach to the
WDB integration.

Software Element L λpre(L) λpost(L) ΓA(L) ΓR(L) ΓM (L) λ̂(L) Γ̄(L)

wdb_client B 28 33 5 0 2 1.18 8.25

wdbinterf_client F 104 124 20 0 0 1.19 23.85

wdbinterf_driver F 76 85 11 0 2 1.12 14.54

F-Framework, B-Base, N-New

Table D.14: Detailed LOC data for the second integration Player approach to the
WDB integration.

cost for the Player second integration code are shown in Tables D.14 and D.15. Sum-

marized coupling, LOC, and complexity data by location are shown in Tables D.16,

D.17 and D.18.

Software Element L vgpre(L) vgpost(L) v̂g(L) v̄g(L) E(L)

wdb_client B 5 6 1.20 1.20 6.88

wdbinterf_client F 19 22 1.16 3.47 6.86

wdbinterf_driver F 11 12 1.09 1.09 13.33

Table D.15: Detailed complexity data for the second integration Player approach to
the WDB integration task.
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Location sa(L) da(L) se(L) de(L)

Framework 1 2 10 4

Base 0 0 3 2

New 0 0 0 0

Table D.16: Summarized coupling data by location for the second integration Player
approach to the WDB integration task.

Location λpre(L) λpost(L) ΓA(L) ΓR(L) ΓM (L) λ̂(L) Γ̄(L)

Framework 180 209 31 0 2 1.16 38.28

Base 28 33 5 0 2 1.18 8.25

New 0 0 0 0 0 1.00 0.00

Table D.17: Summarized LOC measurement data by location for the second integra-
tion Player approach to the WDB integration task.

Location vgpre(L) vgpost(L) v̂g(L) v̄g(L) E(L)

Framework 30 34 1.13 4.52 8.47

Base 5 6 1.20 1.20 6.88

New 0 0 1.00 0.00 0.00

Table D.18: Summarized complexity data by location for the second integration
Player approach to the WDB integration task.
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E. P2P WDB INTEGRATION DETAILED DATA

E.1 Baseline

The coupling data obtained from the P2P baseline code are shown in Table

E.1. The measures of LOC, McCabe complexity, and complexity change cost for the

P2P baseline code are shown in Tables E.2 and E.3. Summarized coupling, LOC, and

complexity data by location are shown in Tables E.4, E.5 and E.6.

E.2 First Integration

The coupling data obtained from the P2P �rst integration code are shown in

Table E.7. The measures of LOC, McCabe complexity, and complexity change cost

for the P2P �rst integration code are shown in Tables E.8 and E.9. Summarized

coupling, LOC, and complexity data by location are shown in Tables E.10, E.11 and

E.12.

E.3 Second Integration

The coupling data obtained from the P2P second integration code are shown in

Table E.13. The measures of LOC, McCabe complexity, and complexity change cost

Software Element L sa(L) da(L) se(L) de(L)

wdb-client F 0 0 12 2

wdb-server F 0 0 12 4

Table E.1: Detailed coupling data for the baseline P2P approach to the WDB inte-
gration.
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Software Element L λpre(L) λpost(L) ΓA(L) ΓR(L) ΓM (L) λ̂(L) Γ̄(L)

wdb-client F 0 47 47 0 0 1.0 47.0

wdb-server F 0 76 76 0 0 1.0 76.0

Table E.2: Detailed LOC data for the baseline P2P approach to the WDB integration
task.

Software Element L vgpre(L) vgpost(L) v̂g(L) v̄g(L) E(L)

wdb-client F 0 10 1.0 10.0 4.7

wdb-server F 0 19 1.0 19.0 4.0

Table E.3: Detailed complexity data for the baseline P2P approach to the WDB
integration task.

Location sa(L) da(L) se(L) de(L)

Framework 0 0 0 0

Base 0 0 24 6

New 0 0 0 0

Table E.4: Summarized coupling data by location for the baseline P2P approach to
the WDB integration task.

Location λpre(L) λpost(L) ΓA(L) ΓR(L) ΓM (L) λ̂(L) Γ̄(L)

Framework 0 0 0 0 0 1.0 0.0

Base 0 123 123 0 0 1.0 123.0

New 0 0 0 0 0 1.0 0.0

Table E.5: Summarized LOC data by location for the baseline P2P approach to the
WDB integration task.
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Location vgpre(L) vgpost(L) v̂g(L) v̄g(L) E(L)

Framework 0 0 1.0 0.0 0.00

Base 0 29 1.0 29.0 4.24

New 0 0 1.0 0.0 0.00

Table E.6: Summarized complexity data by location for the baseline P2P approach
to the WDB integration task.

Software Element L sa(L) da(L) se(L) de(L)

wdb-client F 0 0 12 4

wdb-server F 0 0 12 5

Table E.7: Detailed coupling data for the �rst integration P2P approach to the WDB
integration task.

Software Element L λpre(L) λpost(L) ΓA(L) ΓR(L) ΓM (L) λ̂(L) Γ̄(L)

wdb-client F 47 74 27 0 0 1.0 27.0

wdb-server F 76 104 28 0 0 1.0 28.0

Table E.8: Detailed LOC data for the �rst integration P2P approach to the WDB
integration task.

Software Element L vgpre(L) vgpost(L) v̂g(L) v̄g(L) E(L)

wdb-client F 10 16 1.60 9.60 4.43

wdb-server F 19 24 1.26 6.32 6.07

Table E.9: Detailed complexity data for the �rst integration P2P approach to the
WDB integration task.
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Location sa(L) da(L) se(L) de(L)

Framework 0 0 0 0

Base 0 0 24 9

New 0 0 0 0

Table E.10: Summarized coupling data by location for the �rst integration P2P ap-
proach to the WDB integration task.

Location λpre(L) λpost(L) ΓA(L) ΓR(L) ΓM (L) λ̂(L) Γ̄(L)

Framework 0 0 0 0 0 1.00 0.00

Base 123 178 55 0 0 1.45 79.59

New 0 0 0 0 0 1.00 0.00

Table E.11: Summarized LOC data by location for the �rst integration P2P approach
to the WDB integration task.

Location vgpre(L) vgpost(L) v̂g(L) v̄g(L) E(L)

Framework 0 0 1.00 0.00 0.00

Base 29 40 1.38 15.17 5.25

New 0 0 1.00 0.00 0.00

Table E.12: Summarized complexity data by location for the �rst integration P2P
approach to the WDB integration task.
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Software Element L sa(L) da(L) se(L) de(L)

wdb-client B 0 0 12 6

wdb-server B 0 0 12 6

Table E.13: Detailed coupling data for the second integration P2P approach to the
WDB integration task.

Software Element L λpre(L) λpost(L) ΓA(L) ΓR(L) ΓM (L) λ̂(L) Γ̄(L)

wdb-client B 74 90 16 0 8 1.22 29.19

wdb-server B 104 122 18 0 6 1.17 28.15

Table E.14: Detailed LOC data for the second integration P2P approach to the WDB
integration task.

for the P2P second integration code are shown in Tables E.14 and E.15. Summarized

coupling, LOC, and complexity data by location are shown in Tables E.16, E.17 and

E.18.

Software Element L vgpre(L) vgpost(L) v̂g(L) v̄g(L) E(L)

wdb-client B 16 17 1.06 1.06 27.47

wdb-server B 24 25 1.04 1.04 27.03

Table E.15: Detailed complexity data for the second integration P2P approach to the
WDB integration task.
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Location sa(L) da(L) se(L) de(L)

Framework 0 0 0 0

Base 0 0 24 12

New 0 0 0 0

Table E.16: Summarized coupling data by location for the second integration P2P
approach to the WDB integration task.

Location λpre(L) λpost(L) ΓA(L) ΓR(L) ΓM (L) λ̂(L) Γ̄(L)

Framework 0 0 0 0 0 1.00 0.00

Base 178 212 34 0 14 1.19 57.17

New 0 0 0 0 0 1.00 0.00

Table E.17: Summarized LOC data by location for the second integration P2P ap-
proach to the WDB integration task.

Location vgpre(L) vgpost(L) v̂g(L) v̄g(L) E(L)

Framework 0 0 1.00 0.00 0.00

Base 40 42 1.05 2.10 27.22

New 0 0 1.00 0.00 0.00

Table E.18: Summarized complexity data by location for the second integration P2P
approach to the WDB integration task.



169

F. SOA PRAGMATICS INTEGRATION DETAILED DATA

F.1 Baseline

The coupling data obtained from the SOA baseline code are shown in Table

F.1. The measures of LOC, McCabe complexity, and complexity change cost for the

SOA baseline code are shown in Tables F.2 and F.3. Summarized coupling, LOC,

and complexity data by location are shown in Tables F.4, F.5 and F.6.

F.2 First Integration

The coupling data obtained from the SOA �rst integration code are shown in

Table F.7. The measures of LOC, McCabe complexity, and complexity change cost

for the SOA �rst integration code are shown in Tables F.8 and F.9. Summarized

coupling, LOC, and complexity data by location are shown in Tables F.10, F.11 and

F.12.

F.3 Second Integration

The coupling data obtained from the SOA second integration code are shown in

Table F.13. The measures of LOC, McCabe complexity, and complexity change cost

for the SOA second integration code are shown in Tables F.14 and F.15. Summarized

coupling, LOC, and complexity data by location are shown in Tables F.16, F.17 and

F.18.
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Software Element L sa(L) da(L) se(L) de(L)

Backend_Messages F 2 0 3 0

Backend_PragImpl F 1 0 3 0

Prag_Messages F 2 0 3 0

Prag_PragmaticsImpl F 1 0 3 0

GUI_Messages F 2 0 3 0

GUI_PragImpl F 1 0 3 0

ServiceUtilities F 3 0 5 0

IceStormAdapter F 1 0 11 0

gui B 0 0 1 0

prag N 0 0 1 0

backend N 0 0 1 0

Table F.1: Detailed coupling data for the baseline in the SOA approach to the Prag-
matics integration task.

Software Element L λpre(L) λpost(L) ΓA(L) ΓR(L) ΓM (L) λ̂(L) Γ̄(L)

Backend_Messages F 0 5 5 0 0 1.0 5.0

Backend_PragImpl F 0 6 6 0 0 1.0 6.0

Prag_Messages F 0 5 5 0 0 1.0 5.0

Prag_PragmaticsImpl F 0 7 7 0 0 1.0 7.0

GUI_Messages F 0 6 6 0 0 1.0 6.0

GUI_PragImpl F 0 6 6 0 0 1.0 6.0

ServiceUtilities F 0 46 46 0 0 1.0 46.0

IceStormAdapter F 0 55 55 0 0 1.0 55.0

gui B 0 4 4 0 0 1.0 4.0

prag N 0 4 4 0 0 1.0 4.0

backend N 0 4 4 0 0 1.0 4.0

Table F.2: Detailed LOC data for the baseline in the SOA approach to the Pragmatics
integration.
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Software Element L vgpre(L) vgpost(L) v̂g(L) v̄g(L) E(L)

Backend_Messages F 0 5 1.0 5.0 1.00

Backend_PragImpl F 0 6 1.0 6.0 1.00

Prag_Messages F 0 5 1.0 5.0 1.00

Prag_PragmaticsImpl F 0 7 1.0 7.0 1.00

GUI_Messages F 0 5 1.0 5.0 1.20

GUI_PragImpl F 0 6 1.0 6.0 1.00

ServiceUtilities F 0 13 1.0 13.0 3.54

IceStormAdapter F 0 13 1.0 13.0 4.23

gui B 0 1 1.0 1.0 4.00

prag N 0 1 1.0 1.0 4.00

backend N 0 1 1.0 1.0 4.00

Table F.3: Detailed complexity data for the baseline in the SOA approach to the
Pragmatics integration task.

Location sa(L) da(L) se(L) de(L)

Framework 13 0 34 0

Base 0 0 1 0

New 0 0 2 0

Table F.4: Summarized coupling data by location for the baseline in the SOA ap-
proach to the Pragmatics integration.

Location λpre(L) λpost(L) ΓA(L) ΓR(L) ΓM (L) λ̂(L) Γ̄(L)

Framework 0 136 136 0 0 1.0 136.0

Base 0 4 4 0 0 1.0 4.0

New 0 8 8 0 0 1.0 8.0

Table F.5: Summarized LOC data by location for the baseline in the SOA approach
to the Pragmatics integration task.
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Location vgpre(L) vgpost(L) v̂g(L) v̄g(L) E(L)

Framework 0 60 1.0 60.0 2.27

Base 0 1 1.0 1.0 4.00

New 0 2 1.0 2.0 4.00

Table F.6: Summarized complexity data by location for the baseline in the SOA
approach to the Pragmatics integration task.

Software Element L sa(L) da(L) se(L) de(L)

Backend_Messages F 2 0 3 2

Backend_PragImpl F 1 0 3 2

Prag_Messages F 2 0 3 4

Prag_PragmaticsImpl F 1 0 3 2

GUI_Messages F 2 0 3 2

GUI_PragImpl F 1 0 3 1

ServiceUtilities F 3 0 5 0

IceStormAdapter F 1 0 11 0

gui B 0 0 1 0

prag N 0 0 1 0

backend N 0 0 1 0

Table F.7: Detailed coupling data for the �rst integration in the SOA approach to
the Pragmatics integration task.

Software Element L λpre(L) λpost(L) ΓA(L) ΓR(L) ΓM (L) λ̂(L) Γ̄(L)

Backend_Messages F 5 8 3 0 0 1.60 4.80

Backend_PragImpl F 6 10 4 0 0 1.67 6.67

Prag_Messages F 5 14 9 0 0 2.80 25.20

Prag_PragmaticsImpl F 7 15 8 0 0 2.14 17.14

GUI_Messages F 6 10 4 0 0 1.67 6.67

GUI_PragImpl F 6 10 4 0 0 1.67 6.67

ServiceUtilities F 46 46 0 0 0 1.00 0.00

IceStormAdapter F 55 55 0 0 0 1.00 0.00

gui B 4 5 1 0 0 1.25 1.25

prag N 4 4 0 0 0 1.00 0.00

backend N 4 4 0 0 0 1.00 0.00

Table F.8: Detailed LOC data for the �rst integration in the SOA approach to the
Pragmatics integration task.
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Software Element L vgpre(L) vgpost(L) v̂g(L) v̄g(L) E(L)

Backend_Messages F 5 7 1.40 2.80 1.71

Backend_PragImpl F 6 7 1.17 1.17 5.71

Prag_Messages F 5 9 1.80 7.20 3.50

Prag_PragmaticsImpl F 7 9 1.29 2.57 6.67

GUI_Messages F 5 7 1.40 2.80 2.38

GUI_PragImpl F 6 7 1.17 1.17 5.71

ServiceUtilities F 13 13 1.00 0.00 0.00

IceStormAdapter F 13 13 1.00 0.00 0.00

gui B 1 1 1.00 0.00 0.00

prag N 1 1 1.00 0.00 0.00

backend N 1 1 1.00 0.00 0.00

Table F.9: Detailed complexity data for the �rst integration in the SOA approach to
the Pragmatics integration task.

Location sa(L) da(L) se(L) de(L)

Framework 13 0 34 13

Base 0 0 1 0

New 0 0 2 0

Table F.10: Summarized coupling data by location for the �rst integration in the
SOA approach to the Pragmatics integration task.

Location λpre(L) λpost(L) ΓA(L) ΓR(L) ΓM (L) λ̂(L) Γ̄(L)

Framework 136 168 32 0 0 1.24 39.68

Base 4 5 1 0 0 1.25 1.25

New 8 8 0 0 0 1.00 0.00

Table F.11: Summarized LOC data by location for the �rst integration in the SOA
approach to the Pragmatics integration task.
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Location vgpre(L) vgpost(L) v̂g(L) v̄g(L) E(L)

Framework 60 72 1.2 14.4

Base 1 1 1.0 1.0

New 2 2 1.0 1.0

Table F.12: Summarized complexity data by location for the �rst integration in the
SOA approach to the Pragmatics integration task.

Software Element L sa(L) da(L) se(L) de(L)

Backend_Messages F 2 0 3 4

Backend_PragImpl F 1 0 3 2

Prag_Messages F 2 0 3 4

Prag_PragmaticsImpl F 1 0 3 2

GUI_Messages F 2 0 3 7

GUI_PragImpl F 1 0 3 3

ServiceUtilities F 3 0 5 0

IceStormAdapter F 1 0 11 0

gui B 0 0 1 0

prag N 0 0 1 0

backend N 0 0 1 0

Table F.13: Detailed coupling data for the second integration in the SOA approach
to the Pragmatics integration task.

Software Element L λpre(L) λpost(L) ΓA(L) ΓR(L) ΓM (L) λ̂(L) Γ̄(L)

Backend_Messages F 8 10 2 0 0 1.25 2.50

Backend_PragImpl F 10 10 0 0 0 1.00 0.00

Prag_Messages F 14 18 4 0 0 1.29 5.14

Prag_PragmaticsImpl F 15 20 5 0 1 1.33 8.00

GUI_Messages F 10 12 3 1 0 1.20 4.80

GUI_PragImpl F 10 12 2 0 0 1.20 2.40

ServiceUtilities F 46 46 0 0 0 1.00 0.00

IceStormAdapter F 55 55 0 0 0 1.00 0.00

gui B 5 6 1 0 0 1.20 1.20

prag N 4 4 0 0 0 1.00 0.00

backend N 4 4 0 0 0 1.00 0.00

Table F.14: Detailed LOC data for the second integration in the SOA approach to
the Pragmatics integration.
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Software Element L vgpre(L) vgpost(L) v̂g(L) v̄g(L) E(L)

Backend_Messages F 7 8 1.14 1.14 2.19

Backend_PragImpl F 7 7 1.00 0.00 0.00

Prag_Messages F 9 12 1.33 3.00 1.71

Prag_PragmaticsImpl F 9 11 1.22 4.91 1.63

GUI_Messages F 7 9 1.29 3.11 1.54

GUI_PragImpl F 7 8 1.40 1.75 1.37

ServiceUtilities F 13 13 1.17 0.00 0.00

IceStormAdapter F 13 13 1.00 0.00 0.00

gui B 1 1 1.00 0.00 0.00

prag N 1 1 1.00 0.00 0.00

backend N 1 1 1.00 0.00 0.00

Table F.15: Detailed complexity data for the second integration in the SOA approach
to the Pragmatics integration.

Location sa(L) da(L) se(L) de(L)

Framework 13 0 34 22

Base 0 0 1 0

New 0 0 2 0

Table F.16: Summarized coupling data by location for the second integration in the
SOA approach to the Pragmatics integration.

Location λpre(L) λpost(L) ΓA(L) ΓR(L) ΓM (L) λ̂(L) Γ̄(L)

Framework 168 183 16 1 1 1.09 17.44

Base 5 6 1 0 0 1.20 1.20

New 8 8 0 0 0 1.00 0.00

Table F.17: Summarized LOC data by location for the second integration in the SOA
approach to the Pragmatics integration.
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Location vgpre(L) vgpost(L) v̂g(L) v̄g(L) E(L)

Framework 72 81 1.13 10.17 1.71

Base 1 1 1.00 1.00 0.00

New 2 2 1.00 1.00 0.00

Table F.18: Summarized complexity data by location for the second integration in
the SOA approach to the Pragmatics integration.
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G. PLAYER PRAGMATICS INTEGRATION DETAILED DATA

G.1 Baseline

The coupling data obtained from the Player baseline code are shown in Table

G.1. The measures of LOC, McCabe complexity. and complexity change cost for the

Player baseline code are shown in Tables G.2 and G.3. Summarized coupling, LOC,

and complexity data by location are shown in Tables G.4, G.5 and G.6.

G.2 First Integration

The coupling data obtained from the Player �rst integration code are shown in

Table G.7. The measures of LOC, McCabe complexity, and complexity change cost

for the Player �rst integration code are shown in Tables G.8 and G.9. Summarized

coupling, LOC, and complexity data by location are shown in Tables G.10, G.11 and

G.12.

G.3 Second Integration

The coupling data obtained from the Player second integration code are shown

in Table G.13. The measures of LOC, McCabe complexity, and complexity change

cost for the Player second integration code are shown in Tables G.14 and G.15. Sum-

marized coupling, LOC, and complexity data by location are shown in Tables G.16,

G.17 and G.18.
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Software Element L sa(L) da(L) se(L) de(L)

muribackendinterf_client F 1 1 2 1

muribackendinterf_driver F 0 1 4 0

muripraginterf_client F 1 1 2 1

muripraginterf_driver F 0 1 4 0

muriguiinterf_client F 1 1 2 1

muriguiinterf_driver F 0 1 4 0

muri_backend B 0 0 4 3

muri_pragmatics B 0 0 4 3

muri_gui B 0 0 6 5

Table G.1: Detailed coupling data for the baseline Player approach to the Pragmatics
integration task.

Software Element L λpre(L) λpost(L) ΓA(L) ΓR(L) ΓM (L) λ̂(L) Γ̄(L)

muribackendinterf_client F 0 9 9 0 0 1.0 9.0

muribackendinterf_driver F 0 15 15 0 0 1.0 15.0

muripraginterf_client F 0 13 13 0 0 1.0 13.0

muripraginterf_driver F 0 15 15 0 0 1.0 15.0

muriguiinterf_client F 0 13 13 0 0 1.0 13.0

muriguiinterf_driver F 0 15 15 0 0 1.0 15.0

muri_backend B 0 18 18 0 0 1.0 18.0

muri_pragmatics B 0 18 18 0 0 1.0 18.0

muri_gui B 0 32 32 0 0 1.0 32.0

Table G.2: Detailed LOC data for the baseline Player approach to the Pragmatics
integration task.
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Software Element L vgpre(L) vgpost(L) v̂g(L) v̄g(L) E(L)

muribackendinterf_client F 0 5 1.0 5.0 1.80

muribackendinterf_driver F 0 7 1.0 7.0 2.14

muripraginterf_client F 0 6 1.0 6.0 2.17

muripraginterf_driver F 0 7 1.0 7.0 2.14

muriguiinterf_client F 0 6 1.0 6.0 2.17

muriguiinterf_driver F 0 7 1.0 7.0 2.14

muri_backend B 0 4 1.0 4.0 4.50

muri_pragmatics B 0 4 1.0 4.0 4.50

muri_gui B 0 6 1.0 6.0 5.33

Table G.3: Detailed complexity data for the baseline Player approach to the Prag-
matics integration task.

Location sa(L) da(L) se(L) de(L)

Framework 3 6 28 11

Base 0 0 4 3

New 0 0 0 0

Table G.4: Summarized coupling data by location for the baseline Player approach
to the Pragmatics integration.

Location λpre(L) λpost(L) ΓA(L) ΓR(L) ΓM (L) λ̂(L) Γ̄(L)

Framework 0 130 130 0 0 1.0 130.0

Base 0 18 18 0 0 1.0 18.0

New 0 0 0 0 0 1.0 0.0

Table G.5: Summarized LOC data by location for the baseline Player approach to
the Pragmatics integration task.

Location vgpre(L) vgpost(L) v̂g(L) v̄g(L) E(L)

Framework 0 48 1.0 48.0 2.7

Base 0 4 1.0 4.0 4.5

New 0 0 1.0 0.0 0.0

Table G.6: Summarized complexity data by location for the baseline Player approach
to the Pragmatics integration.
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Software Element L sa(L) da(L) se(L) de(L)

muribackendinterf_client F 1 1 2 1

muribackendinterf_driver F 0 1 5 0

muripraginterf_client F 1 1 2 1

muripraginterf_driver F 0 1 5 0

muriguiinterf_client F 1 1 2 1

muriguiinterf_driver F 0 1 5 0

muri_backend B 0 0 4 3

muri_pragmatics B 0 0 4 3

muri_gui B 0 0 6 5

Table G.7: Detailed coupling data for the �rst integration Player approach to the
Pragmatics integration.

Software Element L λpre(L) λpost(L) ΓA(L) ΓR(L) ΓM (L) λ̂(L) Γ̄(L)

muribackendinterf_client F 9 12 3 0 0 1.33 4.00

muribackendinterf_driver F 15 18 3 0 0 1.20 3.60

muripraginterf_client F 13 37 21 0 0 2.85 59.77

muripraginterf_driver F 15 34 21 0 0 2.27 47.60

muriguiinterf_client F 13 31 18 0 0 2.38 42.92

muriguiinterf_driver F 15 24 9 0 0 1.60 14.40

muri_backend B 18 26 8 0 0 1.44 11.56

muri_pragmatics B 18 28 10 0 0 1.56 15.56

muri_gui B 32 50 18 0 0 1.56 28.13

Table G.8: Detailed LOC data for the �rst integration Player approach to the Prag-
matics integration task.
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Software Element L vgpre(L) vgpost(L) v̂g(L) v̄g(L) E(L)

muribackendinterf_client F 5 6 1.20 1.20 3.33

muribackendinterf_driver F 7 8 1.14 1.14 3.15

muripraginterf_client F 6 10 1.67 6.67 8.97

muripraginterf_driver F 7 9 1.29 2.57 18.51

muriguiinterf_client F 6 11 1.83 9.17 4.68

muriguiinterf_driver F 7 8 1.14 1.14 12.60

muri_backend B 4 4 1.00 0.00 0.00

muri_pragmatics B 4 5 1.25 1.25 12.44

muri_gui B 6 11 1.83 9.17 3.07

Table G.9: Detailed complexity data for the �rst integration Player approach to the
Pragmatics integration task.

Location sa(L) da(L) se(L) de(L)

Framework 3 6 31 11

Base 0 0 4 3

New 0 0 0 0

Table G.10: Summarized coupling data by location for the �rst integration Player
approach to the Pragmatics integration task.

Location λpre(L) λpost(L) ΓA(L) ΓR(L) ΓM (L) λ̂(L) Γ̄(L)

Framework 130 234 103 0 0 1.80 185.40

Base 18 26 8 0 0 1.44 11.56

New 0 0 0 0 0 1.00 0.00

Table G.11: Summarized LOC data by location for the �rst integration Player ap-
proach to the Pragmatics integration task.

Location vgpre(L) vgpost(L) v̂g(L) v̄g(L) E(L)

Framework 10 16 1.60 9.6 19.31

Base 4 4 1.00 4.0 0.00

New 0 0 1.00 0.0 0.00

Table G.12: Summarized complexity data by location for the �rst integration Player
approach to the Pragmatics integration task.
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Software Element L sa(L) da(L) se(L) de(L)

muribackendinterf_client F 1 1 2 1

muribackendinterf_driver F 0 1 5 0

muripraginterf_client F 1 1 2 1

muripraginterf_driver F 0 1 5 0

muriguiinterf_client F 1 1 2 1

muriguiinterf_driver F 0 1 5 0

muri_backend B 0 0 4 3

muri_pragmatics B 0 0 4 3

muri_gui B 0 0 6 5

Table G.13: Detailed coupling data for the second integration Player approach to the
Pragmatics integration task.

Software Element L λpre(L) λpost(L) ΓA(L) ΓR(L) ΓM (L) λ̂(L) Γ̄(L)

muribackendinterf_client F 12 15 3 0 0 1.25 3.75

muribackendinterf_driver F 18 21 3 0 0 1.17 3.50

muripraginterf_client F 37 40 3 0 0 1.08 3.24

muripraginterf_driver F 34 36 2 0 0 1.06 2.12

muriguiinterf_client F 31 34 3 0 0 1.10 3.29

muriguiinterf_driver F 24 30 6 0 0 1.25 7.50

muri_backend B 26 26 0 0 0 1.00 0.00

muri_pragmatics B 28 33 5 0 0 1.18 5.89

muri_gui B 50 50 0 0 0 1.00 0.00

Table G.14: Detailed LOC data for the second integration Player approach to the
Pragmatics integration task.
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Software Element L vgpre(L) vgpost(L) v̂g(L) v̄g(L) E(L)

muribackendinterf_client F 6 7 1.17 1.17 3.21

muribackendinterf_driver F 8 9 1.13 1.13 3.11

muripraginterf_client F 10 11 1.10 1.10 2.95

muripraginterf_driver F 9 10 1.11 1.11 1.91

muriguiinterf_client F 11 12 1.09 1.09 3.02

muriguiinterf_driver F 8 9 1.13 1.13 6.67

muri_backend B 4 4 1.00 0.00 0.00

muri_pragmatics B 5 6 1.20 1.20 4.91

muri_gui B 11 11 1.00 0.00 0.00

Table G.15: Detailed complexity data for the second integration Player approach to
the Pragmatics integration task.

Location sa(L) da(L) se(L) de(L)

Framework 3 0 31 11

Base 0 0 4 3

New 0 0 0 0

Table G.16: Summarized coupling data by location for the second integration Player
approach to the Pragmatics integration task.

Location λpre(L) λpost(L) ΓA(L) ΓR(L) ΓM (L) λ̂(L) Γ̄(L)

Framework 234 259 25 0 0 1.11 27.75

Base 26 26 0 0 0 1.00 0.00

New 0 0 0 0 0 1.00 0.00

Table G.17: Summarized LOC data by location for the second integration Player
approach to the Pragmatics integration task.

Location vgpre(L) vgpost(L) v̂g(L) v̄g(L) E(L)

Framework 68 75 1.10 7.70 3.60

Base 4 4 1.00 0.00 0.00

New 0 0 1.00 0.00 0.00

Table G.18: Summarized complexity data by location for the second integration
Player approach to the Pragmatics integration task.
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H. P2P PRAGMATICS INTEGRATION DETAILED DATA

H.1 Baseline

The coupling data obtained from the P2P baseline code are shown in Table

H.1. The measures of LOC, McCabe complexity, and complexity change cost for the

P2P baseline code are shown in Tables H.2 and H.3. Summarized coupling, LOC,

and complexity data by location are shown in Tables H.4, H.5 and H.6.

H.2 First Integration

The coupling data obtained from the P2P �rst integration code are shown in

Table H.7. The measures of LOC, McCabe complexity, and complexity change cost

for the P2P �rst integration code are shown in Tables H.8 and H.9. Summarized

coupling, LOC, and complexity data by location are shown in Tables H.10, H.11 and

H.12.

H.3 Second Integration

The coupling data obtained from the P2P second integration code are shown in

Table H.13. The measures of LOC, McCabe complexity, and complexity change cost

Software Element L sa(L) da(L) se(L) de(L)

muri-backend B 0 1 10 3

muri-gui B 0 1 8 2

muri-prag B 0 2 10 5

Table H.1: Detailed coupling data for the baseline P2P approach to the Pragmatics
integration task.



185

Software Element L λpre(L) λpost(L) ΓA(L) ΓR(L) ΓM (L) λ̂(L) Γ̄(L)

muri-backend B 0 67 67 0 0 1.0 67.0

muri-gui B 0 35 35 0 0 1.0 35.0

muri-prag B 0 94 94 0 0 1.0 94.0

Table H.2: Detailed LOC data for the baseline P2P approach to the Pragmatics
integration task.

Software Element L vgpre(L) vgpost(L) v̂g(L) v̄g(L) E(L)

muri-backend B 0 17 1.0 17.0 3.94

muri-gui B 0 9 1.0 9.0 3.89

muri-prag B 0 22 1.0 22.0 4.27

Table H.3: Detailed complexity data for the baseline P2P approach to the Pragmatics
integration task.

Location sa(L) da(L) se(L) de(L)

Framework 0 0 0 0

Base 0 4 28 10

New 0 0 0 0

Table H.4: Summarized coupling data by location for the baseline P2P approach to
the Pragmatics integration task.

Location λpre(L) λpost(L) ΓA(L) ΓR(L) ΓM (L) λ̂(L) Γ̄(L)

Framework 0 0 0 0 0 1.0 0.0

Base 0 196 196 0 0 1.0 196.0

New 0 0 0 0 0 1.0 0.0

Table H.5: Summarized LOC data by location for the baseline P2P approach to the
Pragmatics integration task.
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Location vgpre(L) vgpost(L) v̂g(L) v̄g(L) E(L)

Framework 0 0 1.0 0.0 0.00

Base 0 48 1.0 48.0 4.08

New 0 0 1.0 0.0 0.00

Table H.6: Summarized complexity data by location for the baseline P2P approach
to the Pragmatics integration task.

Software Element L sa(L) da(L) se(L) de(L)

muri-backend B 0 1 10 5

muri-prag B 0 1 8 3

muri-gui B 0 2 10 9

Table H.7: Detailed coupling data for the �rst integration P2P approach to the
Pragmatics integration task.

Software Element L λpre(L) λpost(L) ΓA(L) ΓR(L) ΓM (L) λ̂(L) Γ̄(L)

muri-backend B 67 72 5 0 0 1.07 5.37

muri-prag B 35 45 10 0 0 1.29 12.86

muri-gui B 94 109 15 0 0 1.16 17.39

Table H.8: Detailed LOC data for the �rst integration P2P approach to the Prag-
matics integration task.

Software Element L vgpre(L) vgpost(L) v̂g(L) v̄g(L) E(L)

muri-backend B 17 18 1.06 1.06 5.07

muri-prag B 9 11 1.22 2.44 5.26

muri-gui B 22 25 1.14 3.41 5.10

Table H.9: Detailed complexity data for the �rst integration P2P approach to the
Pragmatics integration task.
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Location sa(L) da(L) se(L) de(L)

Framework 0 0 0 0

Base 0 4 28 17

New 0 0 0 0

Table H.10: Summarized coupling data by location for the �rst integration P2P
approach to the Pragmatics integration task.

Location λpre(L) λpost(L) ΓA(L) ΓR(L) ΓM (L) λ̂(L) Γ̄(L)

Framework 0 0 0 0 0 1.00 0.00

Base 196 226 30 0 0 1.15 34.59

New 0 0 0 0 0 1.00 0.00

Table H.11: Summarized LOC measurement data by location for the �rst integration
P2P approach to the Pragmatics integration task.

Location vgpre(L) vgpost(L) v̂g(L) v̄g(L) E(L)

Framework 0 0 1.00 0.00 0.00

Base 48 54 1.13 6.75 5.12

New 0 0 1.00 0.00 0.00

Table H.12: Summarized complexity data by location for the �rst integration P2P
approach to the Pragmatics integration task.
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Software Element L sa(L) da(L) se(L) de(L)

muri-backend B 0 1 10 6

muri-prag B 0 1 8 6

muri-gui B 0 2 10 11

Table H.13: Detailed coupling data for the second integration source code in P2P
approach to the Pragmatics integration task.

Software Element L λpre(L) λpost(L) ΓA(L) ΓR(L) ΓM (L) λ̂(L) Γ̄(L)

muri-backend B 72 86 27 13 15 1.19 65.69

muri-prag B 45 64 25 6 12 1.42 61.16

muri-gui B 109 120 56 45 20 1.10 133.21

Table H.14: Detailed LOC data for the second integration P2P approach to the
Pragmatics integration task.

for the P2P second integration code are shown in Tables H.14 and H.15. Summarized

coupling, LOC, and complexity data by location are shown in Tables H.16, H.17 and

H.18.

Software Element L vgpre(L) vgpost(L) v̂g(L) v̄g(L) E(L)

muri-backend B 18 22 1.22 4.89 13.44

muri-prag B 11 14 1.27 3.82 16.02

muri-gui B 25 31 1.24 7.44 17.90

Table H.15: Detailed complexity data for the second integration P2P approach to the
Pragmatics integration task.
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Location sa(L) da(L) se(L) de(L)

Framework 0 0 0 0

Base 0 4 28 23

New 0 0 0 0

Table H.16: Summarized coupling data by location for the second integration P2P
approach to the Pragmatics integration task.

Location λpre(L) λpost(L) ΓA(L) ΓR(L) ΓM (L) λ̂(L) Γ̄(L)

Framework 0 0 0 0 0 1.00 0.00

Base 226 270 108 64 47 1.19 261.64

New 0 0 0 0 0 1.00 0.00

Table H.17: Summarized LOC data by location for the second integration P2P ap-
proach to the Pragmatics integration task.

Location vgpre(L) vgpost(L) v̂g(L) v̄g(L) E(L)

Framework 0 0 1.00 0.00 0.00

Base 54 67 1.24 16.13 16.22

New 0 0 1.00 0.00 0.00

Table H.18: Summarized complexity data by location for the second integration P2P
approach to the Pragmatics integration task.
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I. PLAYER MODULE INTEGRATION DETAILED DATA

I.1 Baseline

The measures of LOC, McCabe complexity, and complexity change cost for the

Player module integration baseline code are shown in Tables I.1 and I.2. Summarized

coupling, LOC, and complexity data by location are shown in Table I.3 and I.4.

I.2 First Integration

The measures of LOC, McCabe complexity, and complexity change cost for

the Player module �rst stage integration code are shown in Tables I.5 and I.6. Sum-

marized coupling, LOC, and complexity data by location are shown in Table I.7 and

I.8.

I.3 Second Integration

The measures of LOC, McCabe complexity, and complexity change cost for

the second stage Player module integration code are shown in Tables I.9 and I.10.

Summarized coupling, LOC, and complexity data by location are shown in Table I.11

and I.12.
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Software Element L λpre(L) λpost(L) ΓA(L) ΓR(L) ΓM (L) λ̂(L) Γ̄(L)

consumer B 0 8 8 0 0 1.00 8.00

p2d-consumer F 0 10 10 0 0 1.00 10.00

p2d-mediator-consumer F 0 18 18 0 0 1.00 18.00

provider F 0 11 11 0 0 1.00 11.00

p2d-provider F 0 56 56 0 0 1.00 56.00

p2d-mediator-provider F 0 49 49 0 0 1.00 49.00

p2d-mediator F 0 22 22 0 0 1.00 22.00

F-Framework, B-Base, N-New

Table I.1: Detailed LOC data for the baseline SOA approach to the Player module
integration task.

Software Element L vgpre(L) vgpost(L) v̂g(L) v̄g(L) E(L)

consumer B 0 1 1.00 1.00 8.00

p2d-consumer F 0 2 1.00 2.00 5.00

p2d-mediator-consumer F 0 2 1.00 2.00 9.00

provider F 0 1 1.00 1.00 11.00

p2d-provider F 0 15 1.00 15.00 3.73

p2d-mediator-provider F 0 6 1.00 6.00 8.17

p2d-mediator F 0 2 1.00 2.00 11.00

Table I.2: Detailed complexity data for the baseline SOA approach to the Player
module integration task.

Location λpre(L) λpost(L) ΓA(L) ΓR(L) ΓM (L) λ̂(L) Γ̄(L)

Base 0 8 8 0 0 1.00 8.00

Framework 0 166 166 0 0 1.00 166.00

New 0 0 0 0 0 1.00 0.00

Table I.3: Summarized LOC data by location for the baseline SOA approach to the
Player module integration task.
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Location vgpre(L) vgpost(L) v̂g(L) v̄g(L) E(L)

Base 0 1 1.00 1.00 8.00

Framework 0 28 1.00 28.00 6.00

New 0 0 1.00 0.00 1.00

Table I.4: Summarized complexity data by location for the baseline SOA approach
to the Player module integration task.

Software Element L λpre(L) λpost(L) ΓA(L) ΓR(L) ΓM (L) λ̂(L) Γ̄(L)

consumer B 8 10 2 0 0 1.25 2.50

p2d-consumer F 10 10 0 0 0 1.00 0.00

p2d-mediator-consumer F 18 28 10 0 0 1.56 15.56

provider F 11 11 0 0 0 1.00 0.00

p2d-provider F 56 58 2 0 1 1.04 3.11

p2d-mediator-provider F 49 74 25 0 0 1.51 37.76

p2d-mediator F 22 22 0 0 0 1.00 0.00

F-Framework, B-Base, N-New

Table I.5: Detailed LOC data for the �rst stage SOA approach to the Player module
integration task.

Software Element L vgpre(L) vgpost(L) v̂g(L) v̄g(L) E(L)

consumer B 1 1 1.00 0.00 0.00

p2d-consumer F 2 2 1.00 0.00 0.00

p2d-mediator-consumer F 2 3 1.50 1.50 10.37

provider F 1 1 1.00 0.00 0.00

p2d-provider F 15 15 1.00 0.00 0.00

p2d-mediator-provider F 6 7 1.17 1.17 32.36

p2d-mediator F 2 2 1.00 0.00 0.00

Table I.6: Detailed complexity data for the �rst stage SOA approach to the Player
module integration task.
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Location λpre(L) λpost(L) ΓA(L) ΓR(L) ΓM (L) λ̂(L) Γ̄(L)

Base 8 10 2 0 0 1.25 2.50

Framework 174 203 37 0 1 1.22 46.36

New 0 0 0 0 0 1.00 0.00

Table I.7: Summarized LOC data by location for the �rst stage SOA approach to the
Player module integration task.

Location vgpre(L) vgpost(L) v̂g(L) v̄g(L) E(L)

Base 1 1 1.00 0.00 0.00

Framework 28 30 1.07 2.14 21.66

New 0 0 1.00 0.00 0.00

Table I.8: Summarized complexity data by location for the �rst stage SOA approach
to the Player module integration task.

Software Element L λpre(L) λpost(L) ΓA(L) ΓR(L) ΓM (L) λ̂(L) Γ̄(L)

consumer B 10 12 2 0 0 1.20 2.40

p2d-consumer F 10 10 0 0 0 1.00 0.00

p2d-mediator-consumer F 28 38 10 0 0 1.36 13.57

provider F 11 11 0 0 0 1.00 0.00

p2d-provider F 58 60 2 0 1 1.03 3.10

p2d-mediator-provider F 74 96 22 0 0 1.30 28.54

p2d-mediator F 22 22 0 0 0 1.00 0.00

F-Framework, B-Base, N-New

Table I.9: Detailed LOC data for the second stage SOA approach to the Player
module integration task.
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Software Element L vgpre(L) vgpost(L) v̂g(L) v̄g(L) E(L)

consumer B 1 1 1.00 0.00 0.00

p2d-consumer F 2 2 1.00 0.00 0.00

p2d-mediator-consumer F 3 4 1.33 1.33 10.18

provider F 1 1 1.00 0.00 0.00

p2d-provider F 15 15 1.00 0.00 0.00

p2d-mediator-provider F 7 8 1.14 1.14 24.97

p2d-mediator F 2 2 1.00 0.00 0.00

Table I.10: Detailed complexity data for the second stage SOA approach to the Player
module integration task.

Location λpre(L) λpost(L) ΓA(L) ΓR(L) ΓM (L) λ̂(L) Γ̄(L)

Base 10 12 2 0 0 1.20 2.40

Framework 203 237 34 0 1 1.17 40.95

New 0 0 0 0 0 1.00 0.00

Table I.11: Summarized LOC data by location for the second stage SOA approach to
the Player module integration task.

Location vgpre(L) vgpost(L) v̂g(L) v̄g(L) E(L)

Base 1 1 1.00 0.00 0.00

Framework 30 32 1.07 2.14 19.14

New 0 0 1.00 0.00 0.00

Table I.12: Summarized complexity data by location for the second stage SOA ap-
proach to the Player module integration task.
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